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1 Introduction properties, and gravity in order to conduct trajectory sensitivity

The dynamics of multibody systems serve as a basis for mi@}ydies, as well as mod.el linearization. Similarly, Martin and Bo-
models of mechanical devices ranging from simple planar mec ow [12] used derivatives O.f the dynamlcs for fully actuated
nisms to complex biological systems. Although various formula[ch,’ts to solve for locally optimal motions. While our results are
tions of the equations of motion for articulated multibody systenfimilar in some respects to these papers, none of them deals with
have been developed, as we attempt to model, simulate, desigderactuated systems with some active and some passive joints
and control systems with ever increasing complexity, the need f8¢ We do. With underactuated systems, the equations are consid-
more concise, parametric equations becomes an important con§igbly more complex since forward and inverse dynamics prob-
eration. If the kinematic and dynamic parameters of the systd@ims must be solved simultaneously.
are accessible, then sensitivity equations can be developed witlin Featherstongl3], the recursive Newton-Euler equations are
respect to these parameters. These sensitivities will become éxpressed irspatial notation In spatial notation, linear and angu-
creasingly important for complex problems like human motiofar quantities are combined into six-dimensional velocity and
optimization[1] and animatio2]. In this paper a multibody dy- force vectors. This notation greatly simplifies the analysis of rigid
namics algorithm is developed that can be used to solve thassdy dynamics by allowing the algorithms to expressed concisely.
complex motion simulation problems. Featherston¢13] also introduced the concept of tlaeticulated

Early work on dynamics formulations for serial chains for aerqody inertiaand produced a®(n) dynamics formulation of the
space and robotics ap_plications was conducted in the mid-19683¢yard dynamics which allows joint accelerations to be com-
by Hooker and Margulief3] and by Uickef{4]. Stepanenko et al. n,teq without an explicit inversion of the mass matrix. Rodriguez
[5] were the first to formulate the recursive Newton-Euler equay,y jai14] applied Kalman filtering techniques to formulate the
tions for spatial open chains. In their formulation, the I('nemat'(\f%rward and inverse dynamics using spatial vector notation similar

of the links are represented in fixed-frame coordinates. Their 3R Featherstone Building on this work [15,16, they develop
proach was reformulated by Orif] to provide a cleaner notation the Spatial Ope.rator Algebrawhich is ther; a;;plied to create

and improved efficiency. Luh et &7] represented the joint ve- cursive dynamics formulations. More recently, Featherstone

locities, accelerations, and forces in the local link frames al . . . : .
showed that while the Lagrangian dynamics formulation increas | has extended the articulated body inertia algorithm in order to

in complexity as the cube of the number of links, the recursid-hieveO(log(n)) complexity onO(n) parallel processors.
formulation isO(n). Hollerbach[8] provided a recursive form of N Park et al.[18], the product of exponentiaformulation
the Lagrangian formulation, which was al€(n). Silver [9] [19,20 is used to derive a geometric version of the recursive
showed the equivalence of the Lagrangian and Newton-Euynamics similar to Featherstone’s, but based on the geometric
algorithms. concepts of Lie groups. In Ploen and P&#d|, the formulation

Not only are the above-mentioned formulations of multibodyas extended to handle forward dynamics for both recursive and
dynamics important, but so are their sensitivity to the motion vari-agrangian forms of the dynamics. Chen et[&@2,23 used a
ables. For instance, Balafoutis et g10] developed an algorithm similar geometric formulation to automatically generate the kine-
that creates linearized dynamic models for robot systems movingatic and dynamic equations of motion for reconfigurable modu-
along nominal trajectories. The linearized model allows for lineaar robots. The algorithm developed in this paper build$18j to
control system design techniques to be applied to robot systemandle the forward dynamics and sensitivity equations for under-
Murray and Neumafil1] differentiated the Newton-Euler dynam-actuated, tree topology systems. The algorithm developed solves
ics equations with respect to kinematic link parameters, link maggher forward or inverse kinematics. It was inspired by the work
of Jain and RodriguefZL 6]. We approach the problem from a very
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benefit of this formulation is the ability to differentiate the equa- g=(w,v) (4)

tions of motion with respect to kinematic and dynamic parameters 3 3 ) ) )

geometric information about the motion. To understand this infor-
mation, we next describe matrix exponentials o(BE

2 Background 2.3 Matrix Exponentials and Logarithms. The principle
relation between a Lie grou8Q(3) or SE3)) and its associated
Lie algebra(so3) or s€3)) is the matrix exponentia¢®'. The
Sosed-form expressions for the matrix exponentials for members
of sa(3) and s€3) are well-known[25]. For [w]esa3), we have

2.1 The Special Orthogonal and Euclidean Groups, S@3)
and SKE(3). Transformations on orientations in Euclidean spa
are accomplished by the use of the rotation matrjpwhich is an
element of the special Orthogonal group, (30 The rotation

group S@3) is an example of d.ie group A Lie group is a sing l-cos¢
differentiable manifoldG such that the following two properties explo])=1+ p [w]+ r: [w], (5)
are satisfied foA,Be G [24]:
. . where

1 For the mappind (A,B)=AB we requiref(A,B) e G andf
to be continuously differentiable. =] ol

2 The mappinA—A~* must exist and be continuously differ-; js straightforward to show that ef]) e SO(3) by showing
entiable. that exp[w])exp(w])"=exp(w])Texp(w])=I and detexp[w]))

To show that property 1 is satisfied, f&;B e SO(3), note that =*1. ) ) )
the productAB satisfies the two properties of a rotation matrix: The matrix exponential fog=(w,v) e se(3) is
00T=0"T0=1, and det®)=+1. Since matrix multiplication [w] exp[w]) Av
forms products of the matrix entries which are continuously dif- eg—ex;{ }
ferentiable, the mappingis differentiable as well. Additionally, 0 1
since® ~1=0T for rotation matrices, property 2 is trivially satis-\here

fied.

The rigid body transformation, cast in4t homogeneous form, Allt 1—COS¢[ 1+ p—sing
is the Lie group referred to as the special Euclidean3 group or n @? @ @°
SHK3). Given the rotation® e SQ(3) and translatiorb € R°, the ) .
inverse of a matrix composed oB(b) e SE(3) can be written as: 't IS easy to see that?e SE(3) since exfhw]) eSO3) and Av

o b}‘l {@T o e R®. Physically,g=(w,v) are thescrew parameterdor the

v

(6)

0 O

[w]?

transformation:e9 is a screw motion with the axis of rotation
0o 1 0 1 @ directed alongo with the rotation angldw||. The vectorv deter-
) o mines the translational component, and for a pure rotation about
which satisfies property 2. passing through some poigt v =X w.

2.2 Lie Algebras s¢3) and sd€3). An important concept The matrix Iogarithm takes elements _of the Lie group and re-
associated with each Lie group is the notion dfie algebra The turns the assouateq member of the Lie algebra. It also has a
tangent space at the identity element of a Lie group is called tRi9Sed form expression fdh e SQ(3) (see[25)):

Lie algebra for that group. The Lie algebra, along with a bilinear ®
map called the.ie bracket forms a vector space. The Lie bracket, log0=———(0-0")=[w] @)

[-,-], satisfies 2sin¢

1 Skew-symmetryx,y]=—[y,X]; and for SE3):

2 Jacobi identity [x,[y,z]]+[z[X,y1]1+[Y.[z,x]]=0; I ® b [] A 'b

= 8

for everyx,y,z in the associated Lie algebra. °9 0 1 0 0 ®

The Lie algebra associated with the Lie group(SCcan be where
determined by evaluating the tangent vectors to a smooth curve
O(t) on SA3) where ®(0)=I. Differentiating both sides of . 1 2 sing— ¢(1+cosq¢) )
O(1)O(t)T=1 with respect tot and evaluating at=0 results in A== slel+ 252snd [w],

0(0)+0®(0)"=0. Therefore the Lie algebra of $8), denoted by s B 2 1 2
sa(3), consists of the set of skew symmetric matricesR3i3 of ~and ¢ satisfiesTr(¢)=1-2 cosé, |¢|<m. (Also, ¢°=[]*)

the form 2.4 Spatial Velocities and Forces. We now describe the
relations between thspatial velocityof a moving body and the

0 - -
@z Oy Lie algebra s€). Let X(t)=(0O(t),b(t)) be a curve on SB)
[w]=]| © 0 o, (2)  describing the motion of a rigid body relative to an inertial frame.
—wy 0 The tangent vectaX(t) can be identified with an element of(8g

in two different ways:
where w:(wx,wy,wz)eRs and [-] is an operation which .y

changes the three dimensional vector into the associated skew XX =00 1Lb-00"1
symmetric matrix.

In a similar fashion, it can be shown that the Lie algebra ass
ciated with SE3), denoted @), consists of 44 matrices of the X—l)'(:((afl(;)’@flb)

form
g:[[w] v (3) 010 are skew symmetric and therefore elements ¢8spWe
0 0 refer toX X as thebody-fixed velocityepresentation oX since

where v eR%. We can further simplify this expression by[w]@‘lé) andv=0"1b are the angular and translational veloci-
denoting ties of the rigid body expressed in the moving frafoéen re-

gnd

which are both elements of @. (Observe that bot9® ~ and
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ferred to as a body-fixed reference frgm&he pair @w,v) for g,hese(3) andg,h in the 4<x4 matrix form of (3). The
e se(3) is referred to as the spatial velocity representation of teguivalent form for the 6-vector representationhdf
body.
While spatial velocities are represented with elements () se [wg] 0
spatial forceswhich consist of a moment-force pair, are regarded [vg] [wg]
Similarly, the dual operator, &ds given by

@ (14)

ady(h)=

Uh
as inhabiting the dual space of(3g denoted s@)*. This distinc-
tion can be traced to the fact that ford@ghich behave as covec-
tors) transform differently under a change of coordinates than ve- ad; (h*)=[g,h*] (15)
locities (which behave as tangent vectprAs a result, forces and )

moments can be thought of as belonging to the dual space %Py the equivalent form:
velocities and angular velocities. A spatial force represented in

) [wg]T [Ug]T
screw form,g= (M, F) e se(3), is often called avrench ady (h*)=

0 [og]"
2.5 Adjoint Operators. Since members of §8) have six ) . ¢ .
free parameters as shown(#), we may store them in a compact Physically the mappings gth) and ag (h) g*enerallze the stan-
form as elements dR®. The adjoint operators on €) and s¢3) dard cross product operation to(3pand s€3)*.

will be defined on both matrix and vector forms. Since it is nor- 5 g Kinematics Using the Product of Matrix Exponentials.

mally unambiguous which form is necessary when performinghe kinematics of an open chain can be modeled as a sequence of
operations, we will not find it necessary to distinguish between thgymogeneous transformations between consecutive joint frames.
two forms. In those rare cases where it is necessary to state Whiel the transformation which describes the motion between the
form g e se(3) takes it will be pointed out in the text-otherwisgrame of linki and the frame of link — 1 be T, 1;€SE(3). A

the reader may assume either form. ) _series of sequential matrix transformations between adjacent joint
An element of the Lie group can be used as a linear mapping f8mes can be combined as:

the Lie algebra. This is called thdjoint mapon SE3), denoted
by Ad, where Ag(h):seg3)—se(3) is given by Tii=Tii+aTisgje2 - Tjoyj (7)
_ 1 The homogeneous transformatidp;, ; can be written in two

Adg(h)=GhG ©) forms using matrix exponential notation. The first form is
for Ge SE(3) andhese(3). Notethat h is in the 4x4 matrix Ti.i+1-eSam,, WhereS e se(3) is the joint screw written in the
form of Eq. (3). It can be easily shown that A¢h) admits the coordinates of link —1, g; is the current position of joini rela-
following form for the 6-vector representation lof tive to a specified zero position aidj; is the coordinate transfor-
mation between link and linki—1. The second form iF; ;.
=M,eS%, where$, is the joint screw written in the coordinates of
the body-fixed frame for link. This representation is the more
useful of the two since it allows us to write the joint screw for link

Physically, the Adjoint map is a coordinate transformation onin the local frame of linki.
sd3). This allows us to transform spatial velocities from one ref- Note that expressing the link to link transformations in expo-
erence frame to another via the (8E map between the two nential form has an advantage over other representations like
frames. For example, ¥,=(w,,v,) denotes the spatial velocity Denavit-Hartenberg, in that the joint motion for prismatic, revo-
of a rigid body in frameM, and T, ,e SE(3) represents the co-lute, and screw joints are treated in a uniform way. In addition, it
ordinate map from frambl, to frameM  then the spatial velocity is trivial to differentiateeS with respect tay; which makes it far
of the rigid body in frameM;, denotedV, is given byV; less cumbersome to derive the sensitivity equations with our ap-
= AdTl 2(V2) . proach.
Thedual Adjointoperator, denoted by Adis a linear mapping . . . .

on the dual space, €*. The map Ad(h*):se3)*—>se(3) is 3 Hybrid Recursive Dynamics Algorithm
given by

M

p (16)

® o
[b]® ©

Wh

Adg(h)= (10)

Uh

3.1 Newton’s Law for a Single Rigid Body. The algo-
rithms in this paper use the spatial form of Newton’s law derived
in [18]. If one uses the 6-vector form of the spatial force and
velocity, then the Newton-Euler equations of motion for a single
rigid body are

AdE(h*)=G h*G (11)

for G e SE(3) andch* e se(3)". An equivalent form is used when
h* is represented as a 6-vector:

F=JV-ad,(JV), (18)

(12)  where ad is defined in(16), V=[“], is the spatial velocity of a
frame attached to the moving body whose origin is at the point of
Notice that the matrix used for the Adbperator is the transpose application of the applied Ian:[?"], and the spatial inertidis
of the one used for the Ad operator. 2
Physically, the dual Adjoint map is a coordinate transformation I=mr]= mlr]
on s&3)*. This allows us to transform spatial forces from one -mir] m-1
reference frame to another via the (SEmap between the two
frames. For example, i,=(M,,F,) e se(3) denotes the spa-
tial force acting on a rigid body with respect to frarve, and
T,,e SE(3) represents the coordinate map from frakhg to
frameM ; then the spatial force acting on the rigid body express
in frameM,, denotedr,, is given byF1=Ad¥l 2(F2). a
The Lie algebra can also be used as a linear mapping on itself. f=ma (20)
This is theLie bracketoperation discussed earlier. We will denote M=li+oXlo+trxma, (21)
this operation by ad. It has the form:

@T @T[b]T
0o o

M

Adf(h*)= P

. (19)

In (18), the loads may be applied at an arbitrary location on the
body relative to its center of mass. The mass of the body and
the inertia about the center of masg.iJhe vector from the point
of application of the load to the center of mass.iThe Newton-
ler equations equivalent ta8) are

wherea=v+wXuv is the acceleration of the point of application
ady(h)=[g,h]=gh—hg, (13) of the load, anda=a+ o Xr+wX(wXr) is the acceleration of
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the center of mass of the body. In order to establish the equivaady inertia and the bias force take on different forms depending
lence between the above equations &b®), one multiplies out upon whether the joint outward in the chain is active or passive.

the components of18) and applies the Jacobi identityx (b In order to start the recursive computationJoéndB; , we first
xc)+cx(axb)+bx(cxa)=0. recognize that for the last link in a chain, EQ7) is the same
3.2 Extending Newton-Euler. The spatial form of the fOrm as(29) with
Newton-Euler equations can be applied to open kinematic chains 3.=13 (30)
by summing the forces on each link of the chain and transforming nen
them to the appropriate coordinate system. For solving inverse anAd-T-*l (Fni1)—ads (3.Vy) (31)
nn+1 n

dynamics problems the outward/inward recursions can be devel-

oped similar to Luh-Walker-PaJl7] or Featherston¢13]. This whereF,,, is a known force on the last link. Using these values

algorithm assumes that the moti¢position, velocity and accel- as a starting point, we can now develop a recursive algorithm to

eration) for each joint is given and solves for the unknown jointgye forji andB; as we move in from the tip.

torques. It consists of two recursions-one outward from the bas P

to the tip and one inward from the tip to the base as follows:
Algorithm 3.1 (Park et al. [18]). Recursive Inverse Dynamics

SLet us first derive an expression férandB; for the case when
joint i +1 is active(q; ., is known. To do this, we first substitute
Eq. (26) into (29) for joint i+1:
Fi+1:Ji+l(s+1di+1+AdT;i1Jrl(Vi)+ai+1)+Bi+1 (32)
a1~ ad§+1q,“(AdTiji1H(Vi)) (33)

where a; ;; contains the Coriolis portion of'/iﬂ as described

« |nitialization
Given: V0:0,\'/0,Fn+1

Outward recursion: for=1-n do

Ti-1;=M;e% (22) earlier. We then substitut®2) into (27):
Vi:AdTiillvi(Vifl)—i_siqi (23) Fi=Ad] [ji+1(si+1qi+1+AdTi'il+1(\./i)+ai+1)+Bi+1]
a,= —ads;, (Ady 2 (V,_y)) (24) . JV_ a3 | -

=—adsq (V) (25)

Note that the only unknown in this equationVs. Both:]i+1 and
Vi:AdTiilli(\-/ifl)—"Sdi_’_ai (26) Bi+1 are known from the previous step in the recursion. We can

now group terms and solve fdf andB; :
Inward recursion: foi=n—1 do

: : Ji=3+Ad} -y 3, Ady 1 (35)
Fi:Ad:i*ilJrl(Fi+1)+JiVi_aq‘}i(-]ivi) (27) i+l hitl
Bi:Ad:;ial[JiJrl(Si+1di+1+ai+1)+Bi+l]_acrli(\]ivi)

_ ’ (36)
We have separated the portion 6f due to Coriolis forces and the Ad and Ad operators are used in theix@ matrix form in
called ita;. This will aid us in later calculations. Note that thejage equations.

operation Ad transforms the spatial velocity to link i’'s coordinate

frame, and the operation Adransforms the joint wrench to link . . ; . ;
i's coordinate frame is slightly more complicated. We cannot simply use 84) since

In the following, we will call joints with known torque and Gi+1 is unknown. We must find an expression fr. , whose

unknown accelerationpassive jointsand joints with known ac- ©Only unknown quantity isv; and then substitute that expression
celerations and unknown torquastive joints When referring to INt0 (34).

7=SF (28)

Deriving an expression fo}i andB; when jointi + 1 is passive

active or passive joints, we will often use the superscrpts p, Since jointi +1 is a passive joint, the torque is known. We can
respectively. For exampleg® refers to the set of passive jointrelate the unknown acceleration to the known joint torque as:
positions, whileg® refers to the set of active joint velocities. We Tiiq= $T+1Fi+1 (37)

would like to modify Algorithm(3.1) so that it will handle both ) )

active and passive joints-allowing us to solve for the unknowWe then substitute Eq32) into (37):
torques on the active joints and the unknown accelerations on the P . :

pagsive joints. The firét problem with trying to use this algorithm Ti*1:S'T“[‘]i*1(8‘*1qi*1+Adeil+1(V‘)+ai+l)+ Bi+1]

for passive joints appears {i26). Since only the active joint ac- (38)
celerations are known, we cannot solve fr during the first and solve forg; ., as

outward recursion if there are any passive joints in the chain. SIS :

Without V; we are also unable to uga?) to solve for the spatial T‘*1_S'“[‘]‘*1(AdTEi1+1(Vi)+ai+1)+ Bi+1]

force, F;, during the inward recursion. div1™ S 1Ji+1S41 (39)
Using the concept of the articulated body ineftis], we can A .
write F; in the following form: Note that the only unknown in this equation\s. We now sub-
n - stitute (39) into (34) and group terms:
Fi =JiVi + Bi “ R
- . o . . o [+ dia1SaSidia -
wherelJ is the articulated body inertia of linkandB; is the bias Fi=|Ji+tAdi-1 | Jij1i——FF == |Adr1 |V,
force on linki. Unlike (27), Eq. (29) does not require knowledge hitl Si11di+1Si+1 L
of F;,, to computer; . This allows us to postpone the problem of 3 S..S"
computing F; until we have foundV; and introduces the new +Ad} - [(l_l‘r;l'w>(ji+lai+l+ Bi.y)
problem of computing); andB; for each joint. As it turns out, we bt Siedi+aSiea
can compute these quantities for all the joints in chain even with- 3. S .7
out a complete expression fof . This computation is done dur- M} —ad) (J;V;) (40)
ing an inward recursion from the tip to the base. The articulated Si1di+1S+1 :
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Finally, we note thaﬁ is the coefficient of the unknowﬁi . B;
contains all the remaining terms.

3.3 Branched Chains. Branched chains are serial open
chains with two or more distinct “branches” leading to two or

We can now write a new inward recursion in which we solvéore tip links. Our hybrid algorithm can be used to compute the

for the articulated body |nert|a1, and the bias forceB; for each
link.

Algorithm 3.2. Inward recursion forA,-] and B .

¢ Initialization of inward recursion:

Given: Jn+l 0,2,,1=0, B, 1=

Fn+l
Inward recursion: foi=n—1 do

JﬁAd%ilﬂJiHAdT_—_l (i+1)el?

3=
| geads le JiaAdrs  (i+1)el?
Tt S’ 1di41S1
(41)
i=—ad; (J;V)) (42)
Ad:i,ilﬂzmﬂ)i (i+1)el?
Ji Tis1— Sz
B={ Ad, {ZHﬁ 18 10717 Sl .H))}H)i
i+l Sii1di+1S+1
(i+1)elP
(43)
ji(Siqi+ai)+Bi iEIa
=1~ 44
Jiai"l‘Bi ielP ( )

dynamics of branched chains, but we need to present the algo-
rithm in a slightly different form. In the previous section, the
algorithm is presented in an iterative form using a simple num-
bering scheméi=1 to n) for the joints. Linki corresponded to
the ith link counting outward from the base. This numbering
scheme can not be used for branched chains since more than one
path outward from the base exists.

To overcome this ambiguity in link numbering we make some
new definitions:

 Parent Link the link inward(towards the bagdrom a given
link.

* Child Link(s) the link or links which are outwardtowards
the tip(s)) from a given link.

We can now use these definitions to rewrite our hybrid recursive
algorithm for branched chains. The initial outward recursion is
done in adepth firstmanner. This means that we move outward
on a single branch until we reach the end of that branch. We then
move inward along that branch until we find a separate branch
which we follow to its end, and so on.

Algorithm 3.4. Outward recursion for spatial velocity of
branched chains

« |nitialization of outward recursion
Given: V,

Outward recursion: loop over all links in depth first manner

The setsl® and IP denote the indices of the active and passive

joints, respectively. The new variakie contains all the currently
known portions of the generalized forég . To see this, recall

thatF;=J;V;+B; and we see tha; has the same form, but only
contains the known portions &f; . )
We are now left with the original problem of finding, when

there are passive joints in the chain. Once that is done, we can find

easily findF; using(29). Equation(39) is the key to solving this
last difficulty. If we rewrite(39) for joint i we have:

T~ SlT[:ji(AdTiilli(\./i—l) +a;)+Bi]
SIS

ai= (45)
If joint i is passive, giveh/i,l we can usé45) to find g; and then
use(26) to find V; . If joint i is active, givenV;_,, we can com-
pute V; directly from (26). This means that givel, (the accel-
eration of the bagewe can solve for eack; as a function of
V,_, as we move out from the base as follows:

Algorithm 3.3. Outward recursion forr® and .

« |nitialization of outward recursion
Given: Vo
Qutward recursion: for=1 ton do

Ti— S;r[jiAdTi’}lvi(\./i 1) +z]

- .
i S.TJiSi iel (46)
7=S(JV,+B) iel? (47
\I/i:Ad‘ri*}Ii(\./i—l)JFSdiJrai (48)

In this algorithm we have used the results of the previous inward

recursion to obtairz;, J;, andB; .

Journal of Dynamic Systems, Measurement, and Control

Tpi=M,e5% (49)
Vi=Adr_1(Ve) + S (50)
a,=—ads g Adr_1(Vp) (51)

=—ad; (J}V)) (52)

where the indexP denotes the parent link for link So, Tp;
denotes the mapping from linkio its parent link and/, denotes
the spatial velocity of the parent link.

The inward recursion is done in a reverda@adth firstman-
ner. We start at the tip of the chain furthéist terms of number of
links) from the base. As we move inward, we compii@ndB for
all links which are equally far away from the base. We also allow
any number external forces to be applied to a link in the branched
chain. This requires the summation term in E8f) which maps
each external force on link denotedF/;, into the local link
frame using Aiﬁ 1 The mapr; ; denotes the transformation from
framej, in WhICh the external force is written, and framethe
body-fixed frame for linki. .

Algorithm 3.5. Inward recursion for J and B for branched
chains

* Initialization of inward recursion

* Given: the externally applied forces on each liff ,) and
J; =0 for each tip link

* Inward recursion: loop over all links in reversed breadth first
manner

ji = ‘Ji + Z Adiflj;rAdejl (53)
jec il :
Bi=bi+ >, Ady- 12 (54)

jeC
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Jia;+B+3 AdY F/| PP [0 i<j
1]
Zi=\x . (55) athg. 1 (v, —q
| d(Sti+a) B AdLF] el a0 x=a
A ’ NS X=q
JiSST. ax _a —p
) I .TSi.}Ji o 0 x=0* or x=r1l
J= SINE (56) Ad N1 i~
3i iel? \ Ti:ll,i IX |
. .
P 0 i<
Js(r—-sz)] . )
y_ Z; + —ST:]S— iel 57 (9V| .
z' = i | (57) 78, —adsVi—adg—-- X=0
Z; iel? —= .
X |0 X+
whereC denotes the set of child links for linik V-
The final recursion is done in the same depth first manner as the - adsq.—l i>]
first outward recursion: \ T ox
Algorithm 3.6. Outward recursion forr® and ¢f for branched i<j
chains ab; N
« Initialization of outward recursion X —ady, /(JiVi) +ad, J,(ﬁ—)(')) i=]
Given: VO - Initialization of Backward recursion
Outward recursion: loop over all joints in a depth first manner Given: z,,1=Fpn;1,90,1=0
S . - Backward recursion: for=n—1 do
- Tifa [J,AdT;}(Vp)‘i‘Z,] o h -I—fl (62)
i SﬁTJiSi € (58) . iit+1
If x=0j,1:
—al(] \ ; ~
7=S (JiAdr 1(Vp) +2) iel? (59) 03 oAdf . ~, OAd,
_ _ T ax JirtAdh T Ay I — (63)
Vi=Adr 1(Vp)+S0ita; (60) R
' A
where, as earlief? denotes the index of links parent link. +Ad} X Ady, (64)
e . . a_&:acﬁd _s(Ad: (1)) (65)
4 Sensitivity of the Dynamics Algorithm X Mi
As mentioned in the Introduction, we will compute the deriva- . az' .\ ab;
tives of the dynamics with respect to the parameters that influence HAdy | — o (66)
the motion. Because sensitivity analysis is crucial for many as-
pects of the analysis of dynamical systems, this is the primagjse
contribution of this research. The recursive dynamics algorithm A ~y
can be viewed as a function of the form: 3 A 3i4q
— =Ad;———Ad, (67)
dx aJ
T a o
dp :f(qvq!q T )! (61) &Bi ‘?Zi++l ﬁbi
— =Ad; - (68)
. X hlox X
where, if we assume that there are n?+nP degrees of freedom .
with the number of active joint§oints with prescribed motion end if
being n?, the number of passive joint§oints with prescribed a3 oa\ OB
a a I 3 1 I H
torques being nP, then f:R"XR"xXR™XR"™—-R"™xR". The P Waﬁr\]i ) ax ielP
derivatives of the motion needed at&/dq, df/dq, Jf/9g2, and A )
atlarP. X a3y . ~( _9q, oa\ B, o
We construct the following algorithm to computé/dx where o (St @)+ S— o+ o+ 1E
xe{q;,q ,df,r}’}. The indexj denotes the joint number with (69)

which we are taking the derivative. It is interesting that this algo-
rithm takes on slightly different forms depending upoand).

Algorithm 4.1. Recursive gradient computation joints:

_aT]
+ To calculate of/ox: for joint j, let xe{q;,q;,d7(j Q=535 (70)
el®),(jelP)}: AT

* - Initialization of Forward recursion — =5 — (71)
Ix X
Given: V, -
0 b= (72)
- Forward recursion: for=1-n do by
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a3~ o0,
o Hox STISTC vt
i
X 0z (73)
I
s A \ - 7 A N N A
~ (| i
G=—fq (74)
i 1 7 Y } | I I
Q) dz;  JT
T i T Y4 i
n ) —— _— —
g, (SETTIo Q( ax ax) _ _
v 02 (75) Fig. 2 Final path for planar 2R problem
Jz;  Jd; dz;  JT .
+ —'—ﬁ<§zi+m—¢i(§—'+—'I el el < . .
9z, ax  IX ax X relatively simple problems are discussed here. The details of the
v ! solution for these problems and more complex systems are given
X 9Z; . ;
— iel? in [26,27).
X Any reliable numerical algorithm for solving the following
9 a3 problems will need to solve the equations of motion many times
R __7 Tji+[| _ ¢iST] Zojelp with different parameterizations of the solution. In the search for
a3 ax ' ox an optimal solution, the algorithm will also need the gradient of
ox 23, the cost function. This will involve the derivatives of the dynamic
e ield equations as developed in this paper. The example solutions were
Ix obtained using the Cstorm package. In each example, we used
- Initialization of Forward recursion B-spline polynomials to parameterize the motion of the active
. joints. The parameters of the splines were then varied in a con-
. - dVy strained SQP optimization algorithm, implemented with Matlab’s
Given: VOvW constr function. All of the gradients were computed analytically
_ ) using the algorithms developed in this paper. Because of the non-
- Forward recursion: for=1-n do linear, nonconvex nature of these problems, all of the solutions are
o - locally optimal. The initial and final active joint velocities were
Vi _AdT[ ilﬂ(vi—l) (76)  constrained to be equal to zero for these examples.
8Vi,1 5.1 2R Planar Arm. For this example, we wanted to find
P AdTI—Il+1 X the minimum effort motion which moved the two link planar sys-
[ ' ) (77) tem from the horizontal position to the vertical position. In this
X Vi_1 , case both joints were actuated. A cost function of the form:
— i X=dJ; y | =
AdTi,il+1 ax +ad,+(S) qj J 1 [t
S =3 f |7 dt (82)
Vi=Vi +Sqit+a (78) to
P PVAREY L) was used. Figure 1 shows the initial guess for the motion. The
T T(j_ Ly 2 _'\'/.I) icl? (79) frames are spaced at equal intervals in time. We chose the initial
X Poxooox o oox ! motion in a manner that provided a smooth first guess for the
. R . motion and satisfied the boundary conditions. The initial value of
99 _ 9Ci ’9_¢i\'/'+_ 4 Vi " (80) the cost function was 73.57. Figure 2 shows the optiieaally)
ax  ox  ax ! ' ox motion we achieved using the Cstorm package. At first the robot
. . ) allows gravity to take over and it swings down while folding up
v, oV Jq; g the second link. It then swings the first joint into the upward
X ox X ox (81) posture. A small pumping motion is applied to the second link in

5 Example Applications: Optimal Control of Articu-

lated Systems

order to move it into the vertical posture. The final value of the
cost function was 9.9.

In this section we present some results of our primary applica-

tion of the dynamics algorithms developed in this paper-the solu-
tion of optimal control problems for articulated systems. Only

— — ~ A P > 7 7
1 1 a 3 3 \ ) |
I I I I I I I I
Fig. 1 Initial path for planar 2R problem Fig. 3 Acrobot
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“I N Y Y =

Fig. 4 Initial path for Acrobot swing-up motion Fig. 9 Locally optimal swing-up for branched Acrobot
AN 2N VA VA V4 / AN A N L I A A O A R
R REREES N clN N[ |2 |2 T
> )
Fig. 5 Optimal swing up motion with  g,(0)=-—1.0 Fig. 10 Locally optimal swing-up for branched Acrobot with
different initial condition
\ L { ) ) / { 5.2 Acrobot. In this section we consider the swing-up mo-
tion for the Acrobot shown in Fig. 3. The Acrobot is a two-link
robot with no motor at its base. Is has been widely studied by
< L [\ \ 3 s P Spong[28] and others. In this example we prescribe the motion of
the elbow joint in an attempt to drive the system from an initial
N N ) hanging configuration to a vertically inverted configuration. Note
r = 4 A that it is not apparent what elbow motion will drive the system to
the desired final configuration. A cost function of the form
Fig. 6 Optimal swing up motion with  g,(0)=—1.3 2

Fig. 7 Branched Acrobot

NN A LA
A A LN -~
A XN
Fig. 8 Initial path for branched Acrobot swing-up problem
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77 - 2 1 i al|2
J=c; Q1(tf)—§ +¢5(qa(ty)) +§ [7%°dt  (83)
to

was used to produce the desired motion. The constgnasdc,
were used to drive the passive base joint to the vertical position
(g,=/2) with zero velocity. The integral term was used to pe-
nalize the torque on the active joint used to produce the motion.
Figure 4 shows the initial guess for the motion. Notice that this
guess is very poor. The passive base joint does not even begin to
swing up into the vertical position. Figure 5 shows the final mo-
tion obtained using Cstorm for the initial conditiog;(0)
=-1.0,q(0)=0,(0)=0,(0)=0.0. This produces a motion simi-
lar to those proposed by Sporig8], in which the lower link
pumps energy into the system and this energy causes the first link
to move into the vertical position. Figure 6 shows a slightly dif-
ferent motion obtained with the different initial condition of
01(0)=—1.3,0(0)=02(0)=q>(0)=0.0.

5.3 Branched Acrobot. For the final example we examine
the simple branched chain system shown in Fig. 7. This system is
similar to the Acrobot in that it has a passive base joint, but it has
two “legs” which can be used to pump energy into the system.
The same cost functio(83) was used for this system as for the
acrobot since the desired final position of the unactuated base joint
is the same for both cases. However, the two legs of the branched
chain make the dynamics of the two systems very different. There
are now two active joints, both of which contribute to the torque
term in the integral. Figure 8 shows the initial guess for the swing
up motion for the initial conditions o0f;(0)=—1.0 and all the
other positions and velocities equal to zero. Figure 9 shows the
local minimum that was obtained. Figure 10 shows another local
minimum obtained from a different initial guess.
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6 Conclusions [11] Murray, J. J., and Neuman, C. P., 1986, “Linearization and sensitivity models
) ) ) of the newton-euler dynamic robot model,” ASME J. Dyn. Syst., Meas., Con-
In this paper we presented a Lie group formulation for the trol, 108 No. 3, pp. 272-276.

recursive dynamics of underactuated tree topology systems. WA Martin, B. J., and Bobrow, J. E., 1999, “Minimum effort motions for open-
note that prismatic revolute. and screw type joints can all be chain manipulators with task-dependent end-effector constraints,” Int. J. Ro-

. in th i . . ials. This all bot. Res. 18, No. 2, pp. 213-224.
written in the same form using matrix exponentials. IS allows "{"13] Featherstone, R., 198Robot dynamics algorithm&luwer, Boston.

rel_atively Straight fQ['VVﬁrd derivation of the dynamicslalgorithm[m] Rodriguez, G., 1987, “Kalman filtering, smoothing and recursive robot arm
using spatial velocities and wrenches. The exponentials also al- forward and inverse dynamics,” IEEE J. Rob. AutorRA-3, No. 6, pp.
lowed us to explicitly compute the derivatives of the dynamics _ 510-521.

algorithm. One important application that needs these derivativé&® Rodriguez, G., Jain, A., and Kreutz-Delgado, K., 1991, "A spatial operator
. X . . . algebra for manipulator modeling and control,” Int. J. Robot. RBsNo. 4,
is dynamic motion planning. Several simple example problems ;7510 551

were solved for fully and underactuated systems. The dynamigss) Jain, A., and Rodriguez, G., 1993, “An analysis of the kinematics and dynam-

algorithms developed in this paper provide an essential element ics of underactuated manipulators,” IEEE J. Rob. Auto#aNo. 4, pp. 411—

for the analysis and trajectory planning for many of today’s com- _ 421. » _ )

plex articulated machines [17] Featherstone, R., 1999, A d|V|de_—e_1nd—conquer am_culated—body alg_onthm for
' parallel o(log(n)) calculation of rigid body dynamics. part 1: Basic algo-

rithm,” Int. J. Robot. Res.18, No. 9, pp. 867-875.
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