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In this work an efficient dynamics algorithm is developed, which is applicable to a w
range of multibody systems, including underactuated systems, branched or tree-top
systems, robots, and walking machines. The dynamics algorithm is differentiated
respect to the input parameters in order to form sensitivity equations. The algor
makes use of techniques and notation from the theory of Lie groups and Lie alge
which is reviewed briefly. One of the strengths of our formulation is the ability to ea
differentiate the dynamics algorithm with respect to parameters of interest. We de
strate one important use of our dynamics and sensitivity algorithms by using them to
difficult optimal control problems for underactuated systems. The algorithms in this p
have been implemented in a software package named Cstorm (Computer simulatio
for the optimization of robot manipulators), which runs from within Matlab and Simul
It can be downloaded from the website http://www.eng.uci.edu/˜bobrow/
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1 Introduction
The dynamics of multibody systems serve as a basis for m

models of mechanical devices ranging from simple planar mec
nisms to complex biological systems. Although various formu
tions of the equations of motion for articulated multibody syste
have been developed, as we attempt to model, simulate, de
and control systems with ever increasing complexity, the need
more concise, parametric equations becomes an important co
eration. If the kinematic and dynamic parameters of the sys
are accessible, then sensitivity equations can be developed
respect to these parameters. These sensitivities will becom
creasingly important for complex problems like human moti
optimization@1# and animation@2#. In this paper a multibody dy-
namics algorithm is developed that can be used to solve th
complex motion simulation problems.

Early work on dynamics formulations for serial chains for ae
space and robotics applications was conducted in the mid-19
by Hooker and Margulies@3# and by Uicker@4#. Stepanenko et al
@5# were the first to formulate the recursive Newton-Euler eq
tions for spatial open chains. In their formulation, the kinemat
of the links are represented in fixed-frame coordinates. Their
proach was reformulated by Orin@6# to provide a cleaner notation
and improved efficiency. Luh et al.@7# represented the joint ve
locities, accelerations, and forces in the local link frames a
showed that while the Lagrangian dynamics formulation increa
in complexity as the cube of the number of links, the recurs
formulation isO(n). Hollerbach@8# provided a recursive form o
the Lagrangian formulation, which was alsoO(n). Silver @9#
showed the equivalence of the Lagrangian and Newton-E
algorithms.

Not only are the above-mentioned formulations of multibo
dynamics important, but so are their sensitivity to the motion va
ables. For instance, Balafoutis et al.@10# developed an algorithm
that creates linearized dynamic models for robot systems mo
along nominal trajectories. The linearized model allows for line
control system design techniques to be applied to robot syste
Murray and Neuman@11# differentiated the Newton-Euler dynam
ics equations with respect to kinematic link parameters, link m
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properties, and gravity in order to conduct trajectory sensitiv
studies, as well as model linearization. Similarly, Martin and B
brow @12# used derivatives of the dynamics for fully actuate
robots to solve for locally optimal motions. While our results a
similar in some respects to these papers, none of them deals
underactuated systems with some active and some passive
as we do. With underactuated systems, the equations are co
erably more complex since forward and inverse dynamics pr
lems must be solved simultaneously.

In Featherstone@13#, the recursive Newton-Euler equations a
expressed inspatial notation. In spatial notation, linear and angu
lar quantities are combined into six-dimensional velocity a
force vectors. This notation greatly simplifies the analysis of rig
body dynamics by allowing the algorithms to expressed concis
Featherstone@13# also introduced the concept of thearticulated
body inertiaand produced anO(n) dynamics formulation of the
forward dynamics which allows joint accelerations to be co
puted without an explicit inversion of the mass matrix. Rodrigu
and Jain@14# applied Kalman filtering techniques to formulate th
forward and inverse dynamics using spatial vector notation sim
to Featherstone. Building on this work in@15,16#, they develop
the Spatial Operator Algebra, which is then applied to create
recursive dynamics formulations. More recently, Featherst
@17# has extended the articulated body inertia algorithm in orde
achieveO(log(n)) complexity onO(n) parallel processors.

In Park et al. @18#, the product of exponentialformulation
@19,20# is used to derive a geometric version of the recurs
dynamics similar to Featherstone’s, but based on the geom
concepts of Lie groups. In Ploen and Park@21#, the formulation
was extended to handle forward dynamics for both recursive
Lagrangian forms of the dynamics. Chen et al.@22,23# used a
similar geometric formulation to automatically generate the kin
matic and dynamic equations of motion for reconfigurable mo
lar robots. The algorithm developed in this paper builds on@18# to
handle the forward dynamics and sensitivity equations for und
actuated, tree topology systems. The algorithm developed so
either forward or inverse kinematics. It was inspired by the wo
of Jain and Rodriguez@16#. We approach the problem from a ver
different perspective, however. Rather than applying the mac
ery of Kalman filter and the spatial operator algebra, our al
rithm is based upon the geometric concepts of Lie groups. O

he
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benefit of this formulation is the ability to differentiate the equ
tions of motion with respect to kinematic and dynamic parame
and compute exact sensitivity information.

2 Background

2.1 The Special Orthogonal and Euclidean Groups, SO„3…
and SE„3…. Transformations on orientations in Euclidean spa
are accomplished by the use of the rotation matrixQ, which is an
element of the special Orthogonal group, SO~3!. The rotation
group SO~3! is an example of aLie group. A Lie group is a
differentiable manifoldG such that the following two propertie
are satisfied forA,BPG @24#:

1 For the mappingf (A,B)5AB we requiref (A,B)PG and f
to be continuously differentiable.

2 The mappingA→A21 must exist and be continuously differ
entiable.

To show that property 1 is satisfied, forA,BPSO(3), note that
the productAB satisfies the two properties of a rotation matr
QQT5QTQ5I , and det~Q!511. Since matrix multiplication
forms products of the matrix entries which are continuously d
ferentiable, the mappingf is differentiable as well. Additionally,
sinceQ215QT for rotation matrices, property 2 is trivially satis
fied.

The rigid body transformation, cast in 434 homogeneous form
is the Lie group referred to as the special Euclidean group
SE~3!. Given the rotationQPSO~3! and translationbPR3, the
inverse of a matrix composed of (Q,b)PSE(3) can be written as

FQ b

0 1G21

5FQT 2QTb

0 1 G (1)

which satisfies property 2.

2.2 Lie Algebras so„3… and se„3…. An important concept
associated with each Lie group is the notion of aLie algebra. The
tangent space at the identity element of a Lie group is called
Lie algebra for that group. The Lie algebra, along with a biline
map called theLie bracket, forms a vector space. The Lie bracke
@•,•#, satisfies

1 Skew-symmetry: @x,y#52@y,x#;
2 Jacobi identity: @x,@y,z##1@z,@x,y##1@y,@z,x##50;

for everyx,y,z in the associated Lie algebra.
The Lie algebra associated with the Lie group SO~3! can be

determined by evaluating the tangent vectors to a smooth c
Q(t) on SO~3! where Q(0)5I . Differentiating both sides of
Q(t)Q(t)T5I with respect tot and evaluating att50 results in
Q̇(0)1Q̇(0)T50. Therefore the Lie algebra of SO~3!, denoted by
so~3!, consists of the set of skew symmetric matrices onR333 of
the form

@v#5F 0 2vz vy

vz 0 2vx

2vy vx 0
G , (2)

where v5(vx ,vy ,vz)PR3 and @•# is an operation which
changes the three dimensional vector into the associated s
symmetric matrix.

In a similar fashion, it can be shown that the Lie algebra as
ciated with SE~3!, denoted se~3!, consists of 434 matrices of the
form

g5F @v# v

0 0G , (3)

where vPR3. We can further simplify this expression b
denoting
392 Õ Vol. 123, SEPTEMBER 2001
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g5~v,v ! (4)

where vPR3 and vPR3. This form contains some importan
geometric information about the motion. To understand this inf
mation, we next describe matrix exponentials on SE~3!.

2.3 Matrix Exponentials and Logarithms. The principle
relation between a Lie group~SO~3! or SE~3!! and its associated
Lie algebra~so~3! or se~3!! is the matrix exponentialeAt. The
closed-form expressions for the matrix exponentials for memb
of so~3! and se~3! are well-known@25#. For @v#Pso~3!, we have

exp~@v#!5I 1
sinf

f
@v#1

12cosf

f2 @v#2, (5)

where

f5ivi

It is straightforward to show that exp~@v#!PSO~3! by showing
that exp(@v#)exp(@v#)T5exp(@v#)T exp(@v#)5I and det~exp~@v#!!
511.

The matrix exponential forg5(v,v)Pse(3) is

eg5expF @v# v

0 0G5Fexp~@v#! Av

0 1 G , (6)

where

A5I 1
12cosf

f2 @v#1
f2sinf

f3 @v#2

It is easy to see thategPSE(3) since exp~@v#!PSO~3! and Av
PR3. Physically, g5(v,v) are thescrew parametersfor the
transformation:eg is a screw motion with the axis of rotatio
directed alongv with the rotation angleivi. The vectorv deter-
mines the translational component, and for a pure rotation abov
passing through some pointq, v5q3v.

The matrix logarithm takes elements of the Lie group and
turns the associated member of the Lie algebra. It also ha
closed form expression forQPSO~3! ~see@25#!:

log Q5
f

2 sinf
~Q2QT!5@v# (7)

and for SE~3!:

logFQ b

0 1G5F @v# A21b

0 0 G (8)

where

A215I 2
1

2
@v#1

2 sinf2f~11cosf!

2f2 sinf
@v#2,

andf satisfiesTr(f)5122 cosf, ufu,p. ~Also, f25ivi2.!

2.4 Spatial Velocities and Forces. We now describe the
relations between thespatial velocityof a moving body and the
Lie algebra se~3!. Let X(t)5(Q(t),b(t)) be a curve on SE~3!
describing the motion of a rigid body relative to an inertial fram
The tangent vectorẊ(t) can be identified with an element of se~3!
in two different ways:

ẊX215~Q̇Q21,ḃ2Q̇Q21!

and

X21Ẋ5~Q21Q̇,Q21ḃ!

which are both elements of se~3!. ~Observe that bothQ̇Q21 and
Q21Q̇ are skew symmetric and therefore elements of so~3!.! We
refer toX21Ẋ as thebody-fixed velocityrepresentation ofẊ since
@v#Q21Q̇ andv5Q21ḃ are the angular and translational veloc
ties of the rigid body expressed in the moving frame~often re-
Transactions of the ASME
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ferred to as a body-fixed reference frame!. The pair (v,v)
Pse(3) is referred to as the spatial velocity representation of
body.

While spatial velocities are represented with elements of se~3!,
spatial forces, which consist of a moment-force pair, are regard
as inhabiting the dual space of se~3!, denoted se~3!* . This distinc-
tion can be traced to the fact that forces~which behave as covec
tors! transform differently under a change of coordinates than
locities ~which behave as tangent vectors!. As a result, forces and
moments can be thought of as belonging to the dual spac
velocities and angular velocities. A spatial force represented
screw form,g5(M,F)Pse(3)* , is often called awrench.

2.5 Adjoint Operators. Since members of se~3! have six
free parameters as shown in~4!, we may store them in a compac
form as elements ofR6. The adjoint operators on so~3! and se~3!
will be defined on both matrix and vector forms. Since it is no
mally unambiguous which form is necessary when perform
operations, we will not find it necessary to distinguish between
two forms. In those rare cases where it is necessary to state w
form gPse(3) takes it will be pointed out in the text-otherwi
the reader may assume either form.

An element of the Lie group can be used as a linear mapping
the Lie algebra. This is called theAdjoint mapon SE~3!, denoted
by Ad, where AdG(h):se~3!°se(3) is given by

AdG~h!5GhG21 (9)

for GPSE(3) andhPse(3). Notethat h is in the 434 matrix
form of Eq. ~3!. It can be easily shown that AdG(h) admits the
following form for the 6-vector representation ofh:

AdG~h!5F Q 0

@b#Q Q
G Fvh

vh
G (10)

Physically, the Adjoint map is a coordinate transformation
se~3!. This allows us to transform spatial velocities from one r
erence frame to another via the SE~3! map between the two
frames. For example, ifV25(v2 ,v2) denotes the spatial velocit
of a rigid body in frameM2 and T1,2PSE(3) represents the co
ordinate map from frameM2 to frameM1 then the spatial velocity
of the rigid body in frameM1 , denotedV1 , is given by V1
5AdT1,2

(V2).
Thedual Adjointoperator, denoted by Ad* is a linear mapping

on the dual space, se~3!* . The map AdG* (h* ):se~3!*°se(3)* is
given by

AdG* ~h* !5G21h* G (11)

for GPSE(3) andh* Pse(3)* . An equivalent form is used when
h* is represented as a 6-vector:

AdG* ~h* !5FQT QT@b#T

0 QT G FMF G (12)

Notice that the matrix used for the Ad* operator is the transpos
of the one used for the Ad operator.

Physically, the dual Adjoint map is a coordinate transformat
on se~3!* . This allows us to transform spatial forces from o
reference frame to another via the SE~3! map between the two
frames. For example, ifF25(M2 ,F2)Pse(3)* denotes the spa
tial force acting on a rigid body with respect to frameM2 and
T1,2PSE(3) represents the coordinate map from frameM2 to
frameM1 then the spatial force acting on the rigid body expres
in frameM1 , denotedF1 , is given byF15AdT1,2

* (F2).
The Lie algebra can also be used as a linear mapping on it

This is theLie bracketoperation discussed earlier. We will deno
this operation by ad. It has the form:

adg~h!5@g,h#5gh2hg, (13)
Journal of Dynamic Systems, Measurement, and Control
the

ed

ve-

of
in

t

r-
ng
the
hich
e

on

on
f-

-

on
e

ed

elf.
e

for g,hPse(3) andg,h in the 434 matrix form of ~3!. The
equivalent form for the 6-vector representation ofh is

adg~h!5F @vg# 0

@vg# @vg#
G Fvh

vh
G (14)

Similarly, the dual operator, ad* is given by

adg* ~h* !5@g,h* # (15)

or by the equivalent form:

adg* ~h* !5F @vg#T @vg#T

0 @vg#TG FMF G (16)

Physically the mappings adg(h) and adg* (h) generalize the stan
dard cross product operation to se~3! and se~3!* .

2.6 Kinematics Using the Product of Matrix Exponentials.
The kinematics of an open chain can be modeled as a sequen
homogeneous transformations between consecutive joint fram
Let the transformation which describes the motion between
frame of link i and the frame of linki 21 be Ti 21,iPSE(3). A
series of sequential matrix transformations between adjacent
frames can be combined as:

Ti , j5Ti ,i 11Ti 11,i 12 . . . Tj 21,j (17)

The homogeneous transformationTi ,i 11 can be written in two
forms using matrix exponential notation. The first form
Ti ,i 115eSiqiM i , whereSiPse(3) is the joint screw written in the
coordinates of linki 21, qi is the current position of jointi rela-
tive to a specified zero position andMi is the coordinate transfor
mation between linki and link i 21. The second form isTi ,i 11

5Mie
Siqi, whereSi is the joint screw written in the coordinates o

the body-fixed frame for linki. This representation is the mor
useful of the two since it allows us to write the joint screw for lin
i in the local frame of linki.

Note that expressing the link to link transformations in exp
nential form has an advantage over other representations
Denavit-Hartenberg, in that the joint motion for prismatic, rev
lute, and screw joints are treated in a uniform way. In addition
is trivial to differentiateeSiqi with respect toqi which makes it far
less cumbersome to derive the sensitivity equations with our
proach.

3 Hybrid Recursive Dynamics Algorithm

3.1 Newton’s Law for a Single Rigid Body. The algo-
rithms in this paper use the spatial form of Newton’s law deriv
in @18#. If one uses the 6-vector form of the spatial force a
velocity, then the Newton-Euler equations of motion for a sing
rigid body are

F5JV̇2adV* ~JV!, (18)

where ad* is defined in~16!, V5@v
v#, is the spatial velocity of a

frame attached to the moving body whose origin is at the poin
application of the applied loadF5@ f

M#, and the spatial inertiaJ is

J5F I 2m@r #2 m@r #

2m@r # m•1 G . (19)

In ~18!, the loads may be applied at an arbitrary location on
body relative to its center of mass. The mass of the body ism and
the inertia about the center of mass isI. The vector from the point
of application of the load to the center of mass isr. The Newton-
Euler equations equivalent to~18! are

f 5mā (20)

M5I v̇1v3Iv1r 3mā, (21)

wherea5 v̇1v3v is the acceleration of the point of applicatio
of the load, andā5a1v̇3r 1v3(v3r ) is the acceleration of
SEPTEMBER 2001, Vol. 123 Õ 393
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the center of mass of the body. In order to establish the equ
lence between the above equations and~18!, one multiplies out
the components of~18! and applies the Jacobi identitya3(b
3c)1c3(a3b)1b3(c3a)50.

3.2 Extending Newton-Euler. The spatial form of the
Newton-Euler equations can be applied to open kinematic ch
by summing the forces on each link of the chain and transform
them to the appropriate coordinate system. For solving inve
dynamics problems the outward/inward recursions can be de
oped similar to Luh-Walker-Paul@7# or Featherstone@13#. This
algorithm assumes that the motion~position, velocity and accel-
eration! for each joint is given and solves for the unknown joi
torques. It consists of two recursions-one outward from the b
to the tip and one inward from the tip to the base as follows:

Algorithm 3.1 „Park et al. †18‡…. Recursive Inverse Dynamics.

• Initialization

Given: V050,V̇0 ,Fn11

Outward recursion: fori 51 –n do

Ti 21,i5Mie
Siqi (22)

Vi5AdT
i 21,i
21 ~Vi 21!1Siq̇i (23)

ai52adSi q̇i
~AdT

i 21,i
21 ~Vi 21!! (24)

52adSi q̇i
~Vi ! (25)

V̇i5AdT
i 21,i
21 ~V̇i 21!1Siq̈i1ai (26)

Inward recursion: fori 5n– 1 do

Fi5AdT
i ,i 11
21* ~Fi 11!1JiV̇i2adVi

* ~JiV̇i ! (27)

t i5Si
TFi (28)

We have separated the portion ofV̇i due to Coriolis forces and
called it ai . This will aid us in later calculations. Note that th
operation Ad transforms the spatial velocity to link i’s coordina
frame, and the operation Ad* transforms the joint wrench to link
i’s coordinate frame.

In the following, we will call joints with known torque and
unknown accelerationspassive jointsand joints with known ac-
celerations and unknown torquesactive joints. When referring to
active or passive joints, we will often use the superscriptsa or p,
respectively. For example,qp refers to the set of passive join
positions, whileq̇a refers to the set of active joint velocities. W
would like to modify Algorithm~3.1! so that it will handle both
active and passive joints-allowing us to solve for the unkno
torques on the active joints and the unknown accelerations on
passive joints. The first problem with trying to use this algorith
for passive joints appears in~26!. Since only the active joint ac
celerations are known, we cannot solve forV̇i during the first
outward recursion if there are any passive joints in the ch
Without V̇i we are also unable to use~27! to solve for the spatial
force,Fi , during the inward recursion.

Using the concept of the articulated body inertia@13#, we can
write Fi in the following form:

Fi5 Ĵi V̇i1Bi (29)

whereĴ is the articulated body inertia of linki andBi is the bias
force on link i. Unlike ~27!, Eq. ~29! does not require knowledg
of Fi 11 to computeFi . This allows us to postpone the problem
computing Fi until we have foundV̇i and introduces the new
problem of computingĴi andBi for each joint. As it turns out, we
can compute these quantities for all the joints in chain even w
out a complete expression forV̇i . This computation is done dur
ing an inward recursion from the tip to the base. The articula
394 Õ Vol. 123, SEPTEMBER 2001
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body inertia and the bias force take on different forms depend
upon whether the joint outward in the chain is active or passi

In order to start the recursive computation ofĴ andBi , we first
recognize that for the last link in a chain, Eq.~27! is the same
form as~29! with

Ĵn5Jn (30)

Bn5AdT
n,n11
21* ~Fn11!2adVn

* ~JnVn! (31)

whereFn11 is a known force on the last link. Using these valu
as a starting point, we can now develop a recursive algorithm
solve for Ĵi andBi as we move in from the tip.

Let us first derive an expression forĴi andBi for the case when
joint i 11 is active~q̈i 11 is known!. To do this, we first substitute
Eq. ~26! into ~29! for joint i 11:

Fi 115 Ĵi 11~Si 11q̈i 111AdT
i ,i 11
21 ~V̇i !1ai 11!1Bi 11 (32)

ai 1152adSi 11qi 11
~AdT

i ,i 11
21 ~Vi !! (33)

where ai 11 contains the Coriolis portion ofV̇i 11 as described
earlier. We then substitute~32! into ~27!:

Fi5AdT
i ,i 11
21* @ Ĵi 11~Si 11q̈i 111AdT

i ,i 11
21 ~V̇i !1ai 11!1Bi 11#

1JiV̇i2adVi
* ~JiVi ! (34)

Note that the only unknown in this equation isV̇i . Both Ĵi 11 and
Bi 11 are known from the previous step in the recursion. We c
now group terms and solve forĴi andBi :

Ĵi5Ji1AdT
i ,i 11
21* Ĵi 11AdT

i ,i 11
21 (35)

Bi5AdT
i ,i 11
21* @ Ĵi 11~Si 11q̈i 111ai 11!1Bi 11#2adVi

* ~JiVi !

(36)

The Ad and Ad* operators are used in their 636 matrix form in
these equations.

Deriving an expression forĴi andBi when jointi 11 is passive
is slightly more complicated. We cannot simply use Eq.~34! since
q̈i 11 is unknown. We must find an expression forq̈i 11 whose
only unknown quantity isV̇i and then substitute that expressio
into ~34!.

Since jointi 11 is a passive joint, the torque is known. We c
relate the unknown acceleration to the known joint torque as:

t i 115Si 11
T Fi 11 (37)

We then substitute Eq.~32! into ~37!:

t i 115Si 11
T @ Ĵi 11~Si 11q̈i 111AdT

i ,i 11
21 ~V̇i !1ai 11!1Bi 11#

(38)

and solve forq̈i 11 as

q̈i 115
t i 112Si 11

T @ Ĵi 11~AdT
i ,i 11
21 ~V̇i !1ai 11!1Bi 11#

Si 11
T Ĵi 11Si 11

(39)

Note that the only unknown in this equation isV̇i . We now sub-
stitute ~39! into ~34! and group terms:

Fi5FJi1AdT
i ,i 11
21* S Ĵi 112

Ĵi 11Si 11Si 11
T Ĵi 11

Si 11
T Ĵi 11Si 11

D AdT
i ,i 11
21 G V̇i

1AdT
i ,i 11
21* F S I 2

Ĵi 11Si 11Si 11
T

Si 11
T Ĵi 11Si 11

D ~ Ĵi 11ai 111Bi 11!

1
Ĵi 11Si 11t i 11

Si 11
T Ĵi 11Si 11

G2adVi
* ~JiVi ! (40)
Transactions of the ASME
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Finally, we note thatĴi is the coefficient of the unknownV̇i . Bi
contains all the remaining terms.

We can now write a new inward recursion in which we sol
for the articulated body inertia,Ĵ, and the bias force,Bi for each
link.

Algorithm 3.2. Inward recursion for Jˆ i and Bi .

• Initialization of inward recursion:

Given: Ĵn1150,zn1150, Bn115Fn11

Inward recursion: fori 5n–1 do

Ĵi5H Ji1AdT
i ,i 11
21* Ĵi 11AdT

i ,i 11
21 ~ i 11!PI a

Ji1AdT
i ,i 11
21* F I 2

Ĵi 11Si 11Si 11
T

Si 11
T Ĵi 11Si 11

G Ĵi 11AdT
i ,i 11
21 ~ i 11!PI p

(41)

bi52adVi
* ~JiVi ! (42)

Bi55
AdT

i ,i 11
21* zi 111bi ~ i 11!PI a

AdT
i ,i 11
21* Fzi 111

Ĵi 11Si 11~t i 112Si 11
T ~zi 11!!

Si 11
T Ĵi 11Si 11

G1bi

~ i 11!PI p

(43)

zi5H Ĵi~Siq̈i1ai !1Bi i PI a

Ĵiai1Bi i PI p (44)

The setsI a and I p denote the indices of the active and pass
joints, respectively. The new variablezi contains all the currently
known portions of the generalized forceFi . To see this, recall
that Fi5 Ĵi V̇i1Bi and we see thatzi has the same form, but onl
contains the known portions ofV̇i .

We are now left with the original problem of findingV̇i when
there are passive joints in the chain. Once that is done, we can
easily findFi using ~29!. Equation~39! is the key to solving this
last difficulty. If we rewrite~39! for joint i we have:

q̈i5
t i2Si

T@ Ĵi~AdT
i 21,i
21 ~V̇i 21!1ai !1Bi #

Si
TĴiSi

(45)

If joint i is passive, givenV̇i 21 we can use~45! to find q̈i and then
use~26! to find V̇i . If joint i is active, givenV̇i 21 , we can com-
pute V̇i directly from ~26!. This means that givenV̇0 ~the accel-
eration of the base!, we can solve for eachV̇i as a function of
V̇i 21 as we move out from the base as follows:

Algorithm 3.3. Outward recursion fort i
a and q̈i

p .

• Initialization of outward recursion

Given: V̇0

Outward recursion: fori 51 to n do

q̈i5
t i2Si

T@ ĴiAdT
i 21,i
21 ~V̇i 21!1zi #

Si
TĴiSi

i PI p (46)

t i5Si
T~ Ĵi V̇i1Bi ! i PI a (47)

V̇i5AdT
i 21,i
21 ~V̇i 21!1Siq̈i1ai (48)

In this algorithm we have used the results of the previous inw
recursion to obtainzi , Ĵi , andBi .
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3.3 Branched Chains. Branched chains are serial ope
chains with two or more distinct ‘‘branches’’ leading to two o
more tip links. Our hybrid algorithm can be used to compute
dynamics of branched chains, but we need to present the a
rithm in a slightly different form. In the previous section, th
algorithm is presented in an iterative form using a simple nu
bering scheme~i 51 to n! for the joints. Link i corresponded to
the ith link counting outward from the base. This numberin
scheme can not be used for branched chains since more than
path outward from the base exists.

To overcome this ambiguity in link numbering we make som
new definitions:

• Parent Link: the link inward~towards the base! from a given
link.

• Child Link(s): the link or links which are outward~towards
the tip~s!! from a given link.

We can now use these definitions to rewrite our hybrid recurs
algorithm for branched chains. The initial outward recursion
done in adepth firstmanner. This means that we move outwa
on a single branch until we reach the end of that branch. We t
move inward along that branch until we find a separate bra
which we follow to its end, and so on.

Algorithm 3.4. Outward recursion for spatial velocity o
branched chains.

• Initialization of outward recursion

Given: V0

Outward recursion: loop over all links in depth first manner

TP,i5Mie
Siqi (49)

Vi5AdT
P,i
21~VP!1Siq̇i (50)

ai52adSi q̇i
AdT

P,i
21~VP! (51)

bi52adVi
* ~JiVi ! (52)

where the indexP denotes the parent link for linki. So, TP,i
denotes the mapping from linki to its parent link andVP denotes
the spatial velocity of the parent link.

The inward recursion is done in a reversedbreadth firstman-
ner. We start at the tip of the chain furthest~in terms of number of
links! from the base. As we move inward, we computeĴ andB for
all links which are equally far away from the base. We also all
any number external forces to be applied to a link in the branc
chain. This requires the summation term in Eq.~55! which maps
each external force on linki, denotedFi , j8 , into the local link
frame using AdT

i , j
21* . The mapTi , j denotes the transformation from

frame j, in which the external force is written, and framei, the
body-fixed frame for linki.

Algorithm 3.5. Inward recursion for Jˆ i and Bi for branched
chains.

• Initialization of inward recursion
• Given: the externally applied forces on each link(Fi ,*

8 ) and
Ĵj

150 for each tip link
• Inward recursion: loop over all links in reversed breadth fi

manner

Ĵi5Ji1(
j PC

AdT
i , j
21* Ĵ j

1AdT
i , j
21 (53)

Bi5bi1(
j PC

AdT
i , j
21* zj

1 (54)
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zi5H Ĵiai1Bi1S jAdT
i , j
21* Fi , j8 i PI p

Ĵi~Siq̈i1ai !1Bi1S jAdT
i , j
21* Fi , j8 i PI a

(55)

Ĵi
15H F I 2

ĴiSiSi
T

Si
TĴiSi

G Ĵi i PI p

Ĵi i PI a

(56)

zi
15H Fzi1

ĴiSi~t i2Si
Tzi !

Si
TĴiSi

G i PI p

zi i PI a

(57)

whereC denotes the set of child links for linki.
The final recursion is done in the same depth first manner as

first outward recursion:
Algorithm 3.6. Outward recursion fort i

a and q̈i
p for branched

chains.

• Initialization of outward recursion

Given: V̇0

Outward recursion: loop over all joints in a depth first mann

q̈i5
t i2Si

T@ ĴiAdT
P,i
21~V̇P!1zi #

Si
TĴiSi

i PI p (58)

t i5Si
T~ ĴiAdT

P,i
21~V̇P!1zi ! i PI a (59)

V̇i5AdT
P,i
21~V̇P!1Siq̈i1ai (60)

where, as earlier,P denotes the index of linki’s parent link.

4 Sensitivity of the Dynamics Algorithm
As mentioned in the Introduction, we will compute the deriv

tives of the dynamics with respect to the parameters that influe
the motion. Because sensitivity analysis is crucial for many
pects of the analysis of dynamical systems, this is the prim
contribution of this research. The recursive dynamics algorit
can be viewed as a function of the form:

H ta

q̈pJ 5 f ~q,q̇,q̈a,tp!, (61)

where, if we assume that there aren5na1np degrees of freedom
with the number of active joints~joints with prescribed motion!
being na, the number of passive joints~joints with prescribed

torques! being np, then f :Rn3Rn3Rna
3Rnp→Rna

3Rnp
. The

derivatives of the motion needed are] f /]q, ] f /]q̇, ] f /]q̈a, and
] f /]tp.

We construct the following algorithm to compute] f /]x where
xP$qj ,q̇ j ,q̈ j

a ,t j
p%. The index j denotes the joint number with

which we are taking the derivative. It is interesting that this alg
rithm takes on slightly different forms depending uponx and j.

Algorithm 4.1. Recursive gradient computation.

• To calculate ] f /]x: for joint j, let xP$qj ,q̇ j ,q̈ j
a( j

PI a),t j
p( j PI p)%:

• - Initialization of Forward recursion

Given: V0

- Forward recursion: fori 51 –n do
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the

er

a-
nce
as-
ary
m

o-

]Vi

]x
55

0 i , j

adAdTi 21,i
21 ~Vi 21!Si x5qi

Si x5q̇i

0 x5q̈i
a or x5t i

p

AdT
i 21,i
21 S ]Vi 21

]x D i . j

]ai

]x
55

0 i , j

2adSi
Vi2adSi q̇i

]Vi

]x
x5q̇i

0 xÞq̇i

2adSi q̇i

]Vi

]x
i . j

]bi

]x
5H 0 i , j

2ad]Vi /]x* ~JiVi !1adVi
* S Ji S ]Vi

]x D D i> j

- Initialization of Backward recursion

Given: zn11
1 5Fn11 ,Ĵn11

1 50

- Backward recursion: fori 5n– 1 do

h5Ti ,i 11
21 (62)

If x5qi 11 :

] Ĵi

]x
5

]Adh*

]x
Ĵi 11

1 Adh1Adh* Ĵi 11
1

]Adh

]x
(63)

1Adh*
] Ĵi 11

1

]x
Adh (64)

]Bi

]x
5adAdMi

2Si
* ~Adh* ~zi 11

1 !! (65)

1Adh* S ]zi 11
1

]x D 1
]bi

]x
(66)

else:

] Ĵi

]x
5Adh*

] Ĵi 11
1

]x
Adh (67)

]Bi

]x
5Adh* S ]zi 11

1

]x D 1
]bi

]x
(68)

end if.

]zi

]x
55

] Ĵi

]x
ai1 Ĵi S ]ai

]x D1
]Bi

]x
i PI p

] Ĵi

]x
~Siq̈i1ai !1 Ĵi S Si

]q̈i

]x
1

]ai

]x D1
]Bi

]x
i PI a

(69)

- V, f, and ĉ are used to simplify calculations for the passiv
joints:

V i5Si
TĴiSi (70)

]V i

]x
5Si

T
] Ĵi

]x
Si (71)

f i5
ĴiSi

V i
(72)
Transactions of the ASME



the
iven

es
for
of
ic
were
used
ive
on-
’s

ly
on-
are

e

d
s-
is

he
itial
the
of

bot
p
rd
in

he
]f i

]x
5

V i

] Ĵi

]x
Si2 ĴiSi

]V i

]x

V i
2 (73)

ĉi5
2Si

Tzi1t i

V
(74)

] ĉi

]x
5

~Si
Tzi1t i !

]V i

]x
2VS Si

T
]zi

]x
1

]t i

]x D
V2 (75)

]zi
1

]x
5H ]zi

]x
2

]f i

]x
~Si

Tzi1t i !2f i S Si
T

]zi

]x
1

]t i

]x D i PI p

]zi

]x
i PI a

] Ĵi
1

]x
55 2

]f i

]x
Si

TĴi1@ I 2f iSi
T#

] Ĵi

]x
i PI p

] Ĵi

]x
i PI a

- Initialization of Forward recursion

Given: V̇0 ,
]V̇0

]x

- Forward recursion: fori 51 –n do

V̇i
15AdT

i ,i 11
21 ~V̇i 21! (76)

]V̇i
1

]x
55 AdT

i ,i 11
21 S ]V̇i 21

]x D
AdT

i ,i 11
21 S ]V̇i 21

]x D 1adV̇1~Si ! x5qj , i 5 j

(77)

V̇i5V̇i
11Siq̈i1ai (78)

]t i

]x
5Si

TS Ĵi

]V̇i
1

]x
1

]zi

]x
1

] Ĵi

]x
V̇i

1D i PI a (79)

]q̈i

]x
5

] ĉi

]x
2

]f i

]x
V̇i

12f i

]V̇i
1

]x
i PI p (80)

]V̇i

]x
5

]V̇i
1

]x
1Si

]q̈i

]x
1

]ai

]x
(81)

5 Example Applications: Optimal Control of Articu-
lated Systems

In this section we present some results of our primary appli
tion of the dynamics algorithms developed in this paper-the so
tion of optimal control problems for articulated systems. On

Fig. 1 Initial path for planar 2R problem
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relatively simple problems are discussed here. The details of
solution for these problems and more complex systems are g
in @26,27#.

Any reliable numerical algorithm for solving the following
problems will need to solve the equations of motion many tim
with different parameterizations of the solution. In the search
an optimal solution, the algorithm will also need the gradient
the cost function. This will involve the derivatives of the dynam
equations as developed in this paper. The example solutions
obtained using the Cstorm package. In each example, we
B-spline polynomials to parameterize the motion of the act
joints. The parameters of the splines were then varied in a c
strained SQP optimization algorithm, implemented with Matlab
constr function. All of the gradients were computed analytical
using the algorithms developed in this paper. Because of the n
linear, nonconvex nature of these problems, all of the solutions
locally optimal. The initial and final active joint velocities wer
constrained to be equal to zero for these examples.

5.1 2R Planar Arm. For this example, we wanted to fin
the minimum effort motion which moved the two link planar sy
tem from the horizontal position to the vertical position. In th
case both joints were actuated. A cost function of the form:

J5
1

2 Eto

t f

iti2dt (82)

was used. Figure 1 shows the initial guess for the motion. T
frames are spaced at equal intervals in time. We chose the in
motion in a manner that provided a smooth first guess for
motion and satisfied the boundary conditions. The initial value
the cost function was 73.57. Figure 2 shows the optimal~locally!
motion we achieved using the Cstorm package. At first the ro
allows gravity to take over and it swings down while folding u
the second link. It then swings the first joint into the upwa
posture. A small pumping motion is applied to the second link
order to move it into the vertical posture. The final value of t
cost function was 9.9.

Fig. 2 Final path for planar 2R problem

Fig. 3 Acrobot
SEPTEMBER 2001, Vol. 123 Õ 397
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Fig. 4 Initial path for Acrobot swing-up motion

Fig. 5 Optimal swing up motion with q 1„0…ÄÀ1.0

Fig. 6 Optimal swing up motion with q 1„0…ÄÀ1.3

Fig. 7 Branched Acrobot

Fig. 8 Initial path for branched Acrobot swing-up problem
398 Õ Vol. 123, SEPTEMBER 2001
5.2 Acrobot. In this section we consider the swing-up mo
tion for the Acrobot shown in Fig. 3. The Acrobot is a two-lin
robot with no motor at its base. Is has been widely studied
Spong@28# and others. In this example we prescribe the motion
the elbow joint in an attempt to drive the system from an init
hanging configuration to a vertically inverted configuration. No
that it is not apparent what elbow motion will drive the system
the desired final configuration. A cost function of the form

J5c1S q1~ t f !2
p

2 D 2

1c2~ q̇1~ t f !!21
1

2 Eto

t f

itai2dt (83)

was used to produce the desired motion. The constantsc1 andc2
were used to drive the passive base joint to the vertical posi
(q15p/2) with zero velocity. The integral term was used to p
nalize the torque on the active joint used to produce the motio

Figure 4 shows the initial guess for the motion. Notice that th
guess is very poor. The passive base joint does not even beg
swing up into the vertical position. Figure 5 shows the final m
tion obtained using Cstorm for the initial conditionq1(0)
521.0, q̇(0)5q2(0)5q̇2(0)50.0. This produces a motion simi
lar to those proposed by Spong@28#, in which the lower link
pumps energy into the system and this energy causes the first
to move into the vertical position. Figure 6 shows a slightly d
ferent motion obtained with the different initial condition o
q1(0)521.3, q̇(0)5q2(0)5q̇2(0)50.0.

5.3 Branched Acrobot. For the final example we examine
the simple branched chain system shown in Fig. 7. This system
similar to the Acrobot in that it has a passive base joint, but it h
two ‘‘legs’’ which can be used to pump energy into the syste
The same cost function~83! was used for this system as for th
acrobot since the desired final position of the unactuated base
is the same for both cases. However, the two legs of the branc
chain make the dynamics of the two systems very different. Th
are now two active joints, both of which contribute to the torq
term in the integral. Figure 8 shows the initial guess for the sw
up motion for the initial conditions ofq1(0)521.0 and all the
other positions and velocities equal to zero. Figure 9 shows
local minimum that was obtained. Figure 10 shows another lo
minimum obtained from a different initial guess.

Fig. 9 Locally optimal swing-up for branched Acrobot

Fig. 10 Locally optimal swing-up for branched Acrobot with
different initial condition
Transactions of the ASME
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6 Conclusions
In this paper we presented a Lie group formulation for t

recursive dynamics of underactuated tree topology systems.
note that prismatic, revolute, and screw type joints can all
written in the same form using matrix exponentials. This allow
relatively straight forward derivation of the dynamics algorith
using spatial velocities and wrenches. The exponentials also
lowed us to explicitly compute the derivatives of the dynam
algorithm. One important application that needs these derivat
is dynamic motion planning. Several simple example proble
were solved for fully and underactuated systems. The dynam
algorithms developed in this paper provide an essential elem
for the analysis and trajectory planning for many of today’s co
plex articulated machines.
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