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Abstract—— The goal of this research was to develop
a general approach for the generation of motions for
robots that make and break contact with the ground,
such as hopping, walking, or tumbling robots. We first
develop a general contact model and show how to
smooth the forces arising from this contact to make
them C! functions of the state. This is essential for
our motion generation algorithm, which relies on the
solution of an optimal control problem for different
phases of the motion. We apply our approach to the
generation of motion primitives to a simple experi-
mental robot that is capable of producing hand-stands
and tumbling.

I. INTRODUCTION

"Many interesting physical systems have changing dy-
namics because they make and break contact with their
environment, e.g., robots that are not fixed to the
ground, legged robots, and legged organisms: The aim of
this work is to model such systems in a general way. To
do this in the context of our previous work, which relies
on an optimal control approach to generate trajectories
for robots, we had to develop a general model for the
forces arising due to contact between physical bodies.
For the optimal control problem to converge reliably,
the forces in the eontact model have to be C1, so some
functions are introduced to smooth the-contact forces.
Another requirement for the general contact model is

the derivative describing how the distance between two -

bodies changes as a function of the robot joints’ motion.
The resulting general contact model is presented in this
paper.

Optimal control has been used many times to gener-
ate trajectories for physical systems (including rebots),
{[17],[9],i8].[15]) but the complexity of the governing dy-
namics eguations often renders the problem intractable.
For this approach to succeed, it is important that an-
alytic gradients of the equations of motion be used;
approximate gradients are particularly problematic for
systems that make and break contact with the ground,
‘or have nonholonomic constraints. The implication for
the system model is that the forces and accelerations
it defines meed to have continucus derivatives whose
analytic form can be determined.
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Park, Bobrow and Ploen [10] used the matrix exponen-
tial formulation of the dynamics and Lie group theory
to express the equations of motion so that their analytic
gradients come automatically from the formulation of the
equations. This was implemented in the software pro-
gram C-STORM [12], and used to solve hopping rabot[1]
and human walking [16] problems, but in both these
cases, modeling the interaction with the environment
was specific to the particular systermn being simulated.
This formed the foundation for the current research —
the general contact model would be implemented as an
extension to C-STORM.

There are two general ways to deal with dynamic
models that change due to making and breaking con-
tact with the environment: (1) having different dynamic
models for the different phases of motion and switching
between them as needed; or (2) having one dynamics
model throughout the motion, and modeling interactions
with the environment as external forces acting on the
system model [2], [4]. We have chosen to use the latter,
as previously indicated. Yamane and Nakamura [18] give

. a2 good overview of how contact models are implemented.

There are two categories of contact models, penalty-
based methods and analytical methods. In the penalty-
based methods, which we use, contact forces are modeled
with virtual spring-damper systems at points of contact.
Wang, Kumar, and Abel [14] looked more closely at the
rigid bedy assumption in contact and how it can lead to
violations of conservation of energy and other conserva-
tion laws. They simulate mechanical systems undergoing
multiple frictional constraints with local, linearly elastic
properties at points of contact. Our contact model has
similarities to this approach, as well as that of [11], and
is a modification of the approach described in Tenaglia
et al [13].

II. GENERATING MOTIONS

We use an optimal control approach to generate mo-
tions for our robots. The motions include the internal
paths of the actuated robot joints, which we specify,
along with path of the robot through space that result
from these internal paths. Using optimal control to gener-
ate paths allows the paths to be good according to some
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objective measure, does not require a large amount of
- a priori information about the motion, and allows the
motion to be specified in a more high-level manner. For
example, rather than try to figure out what a fuel efficient
path might look like, the objective measure (or cost
function) being minimized in the optimal control problem
can include the total fuel used throughout the motion.
By using different objective measures, motions can be
found with different characteristics, such as minimum
effort used, minimum time to travel a given trajectory,
or the maximum payload that can be moved from one
position to another [15].

To get the trajectories of the actuated robot joints
(the controls in the optimal control problem), we assume
the trajectories minimize some cost function, subject to
certain constraint equations. The cost function together
with the constraint equations define the optimal control
problem. Each unique cost function corresponds to a
separate motion, so specifying the cost function equates
to specifying the motion. The cost function is minimized
subject to the equations of motion of the system, bound-
ary conditions on joint positions and velocities, and joint
limits on the robot model. The general form of cost
function with its constraints is as follows:

. .
s T =P Pe+ [ L e )

Subject to:
M(g)i+Cla,9) +Clg) =7+ 3 8TF (2)
q(0) = g0, ¢(0) =go (3)
g<g<g (4
d<dg<q (5)

where J is the cost function, ¢®(t) is the position of
the actuated joints of the robot, gP(t) is the position of
the unactuated joints of the robot (scme of which are
used to keep track of the position of the robot in space),
¢® is the velocity of the unactuated joints of the robot,
g = (¢®,¢P), the set of all robot joints, and 7* is the
motor torques on the active joints. The matrix @g’ is
the Jacobian of the contact point, and F is the external
force applied at the contact point (the normal and/or
friction forces, obtained from our contact model). The
summation of I F represents the contribution of all the
external forces applied to the system.

We solve the optimal control problem with a direct
method: guess a solution ¢*(t), integrate the equations
of motion with the guessed solution, evaluate J, and use
gradient information to correct the solution so that the
cost decreases until a minimum value for J is found. The
guessed solutions to the paths of the active joints g%(¢)

aré pafameterized with quintic B-splines of the form

g*(t) = Y_a:Bi, (6)
i=1

where B;; are the spline basis functions, and a; are
the scaling coefficients. This ¢®(t) also defines the active
joint velocities and accelerations ¢°(t), §*(t). Moving the
active joints of the robot also causes the passive (unac-
tuated) joints ¢ to move along some trajectory which
can be solved for by integrating the equations of motion
for the system. Because all the terms in the cost function
are then determined, the problem is transformed into one
of static parameter optimization. The spline parameters
defining ¢®(t) are the parameters that are varied during
the optimization.

In our C-STORM software, we have a recursive hy-
brid dynamics algorithm [12] which solves the dynamics
equations for the active joint torques ¢ and the passive
joint accelerations ¢P. This algorithm takes as input the
current state {g,§) along with the active joint accelera-
tions §% and passive joint torques 7P. Let the recursive
algorithm be referred to as g with:

(7)

Given an input §°(¢), TP(t}, and initial conditions
q(0), g(0), we use (7) to salve the differential equation

(Taa qp) = g(q’ (j:(jaa Tp)'

a] @ @
= ) P =4 §7P(q,¢,q%,7P) (8)
f Lt L{g?, g%, %)

for gP(t). The purpose of the third equation is to compute
the second term in the cost function f;’ L(gP, g7, v%)dt.
The exact form of L differs depending on the cost
function being computed. Once the system has been
integrated forward in time, using this algorithm, the cost
function can be evaluated, and then the derivative of the
hybrid algorithm is used to get the gradient of the cost
function.

The derivative of the hybrid algorithm [12] is used
to solve for the active joint torques, the passive joint
accelerations, and the derivatives of both of those with
respect to all of the current joint positions, velocities,
and accelerations. This algorithm takes the same inputs
as g, with the additional inputs of the derivatives of the
torques applied on the passive joints 77 with respect to
all of the current joint positions, velocities, and acceler-
ations. Let the derivative of the recursive algorithm be
referred to as dg with: :

(e, 2270, 22 owerty)

T )

i (oo o 80 0T 97
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Fig. 1. Virtual Spring-Damper System Modeling Contact Forces.

Because the dg algorithm requires the inputs %, %”—;—,

and %’5, the applied forces to the robot.from the environ-
ment must be continuous and continuously differentiable.
The analytic gradient of the cost function can be calcu-
lated with the output from dg and passed to MATLAB’s
BFGS SQP function that performs parameter optimiza-
tion. With the cost function and its gradient, the spline
parameters can be varied so as to find the local minimum
value of J, and the corresponding controls.

I11. CONTACT MODEL, NORMAL AND FRICTION
FORCES

In our contact model, contact between two hodies

results in two forces: a force in the direction normal to the:

shared contact surfaces, and a friction force in the plane
tangential to the contact surfaces and in the opposite
direction of the velocity of the contact point. As in the

contact models of Tenaglia et al. [13], objects are modeled

as though they have a rigid core inside a uniformly thick
layer of compliant material. (This is like the “small region
of interpenetration” in Reichler et al. [11].) The contact
forces from the interpenetration of two objects in the
compliant layer are modeled with virtual spring-damper
systems at the point of contact. For simplicity, the robot
is assumed to be rigid, the compliant layer is assumed
to be on the obstacles it encounters (see Fig. 1}, and the
obstacles are assumed to remain stationary. Additionally,
the forces are scaled by smoothing functions, to ensure
that they are continuous and continuously differentiable,
and that they begin at zero when contact is first made.

To know when the robot first makes contact with the
compliant layer (which is when to start applying contact
forces), and how far into the layer it has penetrated
(which determines the deflection of the virtual spring),
the distance between the two bodies must be determined.
The relative velocity of the two bodies must also be
known, to calculate the virtual damper term in the
contact force model. For the contact model to be general,
it must be formulated in terms of the local directions

obstacle

Fig. 2. Points, Vectors, and Unit Vectors used in General Collision
Model.

iig and ;, where @4 is the direction of the unit vector
between the near points and defines the normal direction,
and @ is a unit vector in the direction perpendicular
to #g, in the plane tangential to the contact surfaces,
pointing in the direction the robot is moving (see Fig.
2). The robot and obstacle may contact in more than
one place, but for clarity the model will be discussed for
just one pair of bodies that is contacting in one location.

We use a distance algorithm which finds the near
points on each body in the pair — that is, the point on
body A that is closest to body B, and vice versa. The
point on the robot body closest to the obstacle is denoted
Probs and the point on the obstacle body closest to the
robot is denoted peps (see Figure 2). The length of the
vector from paps t© Prop, denoted dyec, gives the distance
d between the two bodies, and is used to define the unit

vector fg: 4 4
vec VEC

dueell ~ d o
The other value needed for the contact model, the veloc-

ity of prop, can be obtained using the Jacobian ©{g, pros)
and the vector of joint velocities ¢ as follows:

[ 2 ] = ontapms (1)

where v is the linear velocity of p.g. The linear velocity
v is then decomposed into components in the normal
direction 44, denoted v4, and the tangential direction
iy, denoted v;. The unit vector i, is defined from the
tangential velocity component as follows:

- (4
Uy = ——

floe]l”

g

(12)

where vy = v — (v - @ig)@q.
With these quantities defined, the normal contact force
can be written as:

N = B(k(don — d) — cllvai]) i (13)

where 3 is the smoothing function, k is the virtual spring
constant, ¢ is the virtual damper constant, and d,,, is the
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thickness of the compliant layer around the obstacle. The
contact forces are only calculated when d < d,,, as that
is when contact is defined as occurring.

The smoothing function 3(d) operates in a thin outer
layer of the compliant region. 3(d) is defined such that it
becomes active when the contact forces become nonzero,
at don, but has no influence past a depth of dogys. It is
defined as follows:

0 ifd > don

By ={ fo(d) if don > d > dogy (14)
1 if doff >d

fa(d) = ap + ar1d + azd® + azd® (15)

J@(don) =9, ﬁ’(don) =0 (16)

Bldogs) =1, B'(dogs) =0 (17)

B(d) is constructed so as to ensure that the analytic
gradients of the equations of motion are continuous.
The coefficients (ag, a1, az,a3) are written in terms of
(don:dosys), and the constants dg,, dysy are set by the
user. )
The friction force frri is defined using the normal
force, and has the form:
Frric = —pliN|| v (18)
where ¢ is the Coulomb friction coefficient (x = .3 for

our example}, N is the normal force defined above and -y
is the smoothing function for the friction force. «v is given

by:
'Y(”'Ut”) = { })-(H'Ut”) gt}lllglt-i!;izevmax (19)
ey = 1512y o5ty )
¥(0) =0, ¥{(0)=1 (21)
ff(vma-@) = 1’ ’Y’(Umaz) =0 (22)

Where Ve is the value of ||vy|| at which v goes to unity.

The normal and friction contact forces are found for
each pair of bodies in contact with each other, and are
included as F in the summation term in Eqn. (2) in
the optimal control problem formulation. To use these
forces with the algorithms ¢ and dg (Eqns. (7) and
(8)), the derivative of the contact forces with respect to
the joint positions and velocities (g,¢) must be found.
As the contact forces are functions of the distance be-
tween colliding bodies and the relative velocity of those
bodies, their derivatives can be written with just the
derivatives Op,op/8q, Opobs/9q, and by evaluating the
force expressions directly for the derivatives with respect
to ¢. The next section discusses how the derivatives
Onrop/ 0, Oobs /Og were evaluated.

1V. DERIVATIVE OF DISTANCE FUNCTIONS

Within our optimal control approach, we need the
derivatives of the contact forces N, fs;. with respect to
the robot joint positions ¢(t). N and fy.;. are functions
of the distance between the two bodies in contact, so

- the necessary derivatives are those that describe how the

distance changes between the two bodies as the joints of
the robot move. If Opros/dq, Opobs/Oq are known, that
is sufficient to define the derivatives N/8q, 8 fsric/0a;
therefore, those are the derivatives that will be formu-
lated here. o

The change in the distance between bodies in contact
is not just a function of the robot joints g, but is also
affected by the shape of the surface of the robot and
obstacle. This means that Opros/9¢ is a function of both
the robot shape and the obstacle shape, and the same
holds true for Opeps/d¢. Therefore, the equations that
describe the movement of p,ob, pobs for each shape pair
will be different (i.e., the equations for a pair of spheres
will be different from those for a sphere and a cylinder).

For obtaining the derivatives (3pros/0q, Oposs/0q), we
require a set of equations that define p,.p, pops in terms
of ¢ and in the context of the shapes on which they exist.
One such set of equations can be obtained by defining an
optimization problem for which the solution is prob, Pobs
and where the surface shapes of the robot and obstacle
are expressed as constraints on the optimization {6], [7}.
The general optimization problem is set up as follows:

Min

= - 2 23

Probs Pobs I ”prob pobs” ( )
subject to h(prob: pobs) =0 (24)
Q(P'r-oba poba) <0 (25)

where f is the objective function, A(pros, Poss) are the
equality constraints and g{pyos, Dobs) 8re the inequality
constraints. Not all of the inequality constraints apply
10 Prob, Pobs 8t the same time, so the subset of active
inequality constraints is denoted g¢;,i € I where I is
the set of indices of active inequality constraints. For
compactness, the vector z = [ prob  Pobs ]¥ will be used
in place of prob, Pobs-

The specific form of the constraints h, g depends on the
particular shapes of the robot and obstacle. However, for
all the shapes that can be maodeled in this approach, the
constraints are linear in z which allows them be factored
as follows:

h(l‘) =Kzr+bh
gi(x) = Dx + by

(26)
(27)

To obtain the solution £ = (Pros,Pors) for the con-
strained optimization problem, the Kuhn-Tucker condi-
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tions are solved:

Vi(z) + ATVh{z) + 4T Vgi(z) = 0 (28)
gi(z) =0,iel (30)
Eqs. {28} - (30) can be written as
Q KT DT z x 0
K 0 0 M =H|2|=]b| @)
D 0 0 I In b

where K, D, by, and bs are functions of the robot joint
positions ¢, and Q is obtained from Vf7 (pProb, Pobs) =
Ql Prob  DPobs |-

To get Oprob/0g, Opobs/Bq, we take the partial deriva-
tive of Eq. (31) with respect to ¢ and rearrange it to
~ obtain '

oz O
g b aH r
&, S |
g—q =H a?fl — % A (32)
En 3 "

We have expressions for H,bj,by as functions of
g, so those partial derivatives are defined. The
vector |z A u )T equals H}O b b7, so
the equation can be solved to obtain Oz/8y =
[ Oproo/0q  Bposs/Og 17 :

V. SIMULATION RESULTS

Once our method was implemented in software, we
chose a robot with which to test it. Initially, to check
that the general contact model equations were correct,
we duplicated some previcus results with the hopping
lamp simulation [1]. The general contact model gave
the same final motion as the contact model specific to
the hopping lamp, confirming that the equations were
correct. This also showed that optimizations with the
general contact model took the same amount of time,
or very little more, to converge as optimizations with a
contact model specific to the robot being simulated.

To see that the contact model was in fact general, we
generated motions for the tumbler robot, a robot with
three links actuated by two motors, as shown in Fig. 3.
This is based on a real robot that has been built in our
lab and is still undergoing design iterations. Its ongoing
purpose is to serve as a testbed for the motions generated
through this method. From the position shown in Fig. 3,
each of the links with feet was allowed to rotate until
they impinged on the middle link.

Three motions were generated for the tumbler with this
method. These three motions, referred to as the hand-
stand, the roll, and the downstand, can be concatenated
in a particular order to form a longer sequence. Specifi-
cally, the handstand can be following by the downstand,
or the handstand can be followed by the roll. The first
of these patterns can be repeated in a loop, to form

ﬁ'f/'w\‘(]ﬁ\
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Fig. 3. The Tumbler Robot.
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Fig. 4 The Tumbler Robot going up into a handstand.

a gait for the tumbler. The individual motions can be
seen in Figs. 4 — 6. The optimizations tock between
six and thirty minutes to converge to a local minimum,
depending on the motion. The simulations were run on a
Pentium 700 MHz PC, integrating seven state equations
and seventy-seven gradient equations for every iteration
of the process.

The handstand motion was generated using the cost
function

J = (galts) - ) (33)

where g3 is the rotation of the imiddle link, and the
position shown in Fig. 3 is where g3 = 0. This cost
function rewards motions that end with the middle link
vertical, which resulted in the motion shown in Fig. 4.
The initial and final positions for the motors, and thus
the legs of the robot, are specified when the initial guess
is made for the active joint paths ¢®(t), and is done so for
all motions. The intermediate positions for the path ¢®(¢)
are defined by the a; in (6) which are the parameters that
are varied during the optimization. The roll motion was
generated using the cost function

J =50{q:(ts)) — qalty)

where ¢; measures translation in the horizontal direction
and g3 is the rotation of the middle link. The first term
rewards motion that travels to the left, and the second

(34)
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Fig. 5. The Tumbler Robot going from a handstand into a
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Fig. 6. The tumbler robot going from a handstand into a position
with both feet on the ground.

)

term rewards rotation. The number of contact points
with the ground change several times throughout the
motion.

The downstand motion was generated using the cost
function

ty
J = 50(gs(ty) — )t + %fo HT“szt

where g3 is the rotation of the middle link, which started
this motion at a value of 7/2, so this term encourages
another rotation of n/2 from the initial position (or
ending with the middle link horizontal again, but rotated
7 from the home position). The second term penalizes the
amount of motor torque used to perform the motion, so
it encourages a minimum amount of effort to be used in
completing the motion.

(35)

VI. CONCLUSION

In this paper, we presented an optimal control ap-
proach to generating paths for robots, extended our
contact model to apply generally rather than specifically,
and discussed the derivatives that the general contact

model in conjunction with the optimal control ap-
proach require. We simulated a tumbling robot to verify
that this method is valid. :

This research shows that it is possible to incorporate a
general contact model into an optimal control approach
to generating robot trajectories, and still have optimiza-
tions converge reliably to a local minimum with exact
gradients of the cost function. Qur contact model was
able to resolve multiple contacts between a robot and
its environment, and the use of smoothing functions on
the contact forces did not distort the plausibility of the
resulting motions. Despite adding some calculations to
the computational burden of the optimization, the time
taken to reach convergence was generally comparable to
that of our previous work.

Our future research will involve using this approach to
generate gaits for the tumbler robot mentioned here, and
also to generate some motions for a hopping rebot cur-
rently under construction in our lab. Another application
for this method is simulation of walking rabots, studying
human locomotion, or finding trajectories for multiply-
legged systems. An intelligent way to connect the pieces
of motion generated with this approach is also an area of
interest for our ongoing research. ‘
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