
Pmcmlingr oftha 2004 IEEE
1nt.matlorul Conhnnse on RobO(lcs 6 Automdlon

New Orleans, LA nprll2004

Motion Generation for a Tumbling Robot
Using a General Contact Model

J. V. Albro and J.E. Bobrow
Department of Mechanical and Aerospace Engineering

University of California, Irvine
Irvine, CA 92697

{jvargasc,jebobrow}@uci.edu

Abstrnct-The goal of this research was to develop
a general approach for the generation of motions for
robots that make and break contact with the ground,
such as hopping, walking, or tumbling robots. We first
develop a general contact model and show how to
smooth the forces arising from this contact to make
them C’ functions of the state. This is essential for
our motion generation algorithm, which relies on the
solution of an optimal control problem for different
phases of the motion. We apply our approach to the
generation of motion primitives to a simple experi-
mental robot that is capable of producing hand-stands
and tumbling.

I. INTRODUCTION

Many interesting physical systems have changing dy-
namics because they make and break contact with their
environment, e.g.- robots that are not fixed to the
ground, legged robots, and legged organisms. The aim of
this work is to model such systems in a general way. To
do this in the context of our previous work, which relies
on an optimal control approach to generate trajectories
for robots, we had to develop a general model for the
forces arising due to contact between physical bodies.
For the optimal control problem to converge reliably,
the forces in the contact model have to be C’, so some
functions are introduced to smooth the contact forces.
Another requirement for the general contact model is
the derivative describing how the distance between two
bodies changes as a function of the robot joints’ motion.
The resulting general contact model is presented in this
paper.

Optimal control has been used many times to gener-
ate trajectories for physical systems (including robots),
([17],[9],[8],[15]) but the complexity of the governing dy-
namics equations often renders the problem intractable.
For this approach to succeed, it is important that an-
alytic gradients of the equations of motion be used;
approximate gradients are particularly problematic for
systems that make and break contact with the ground,
or have nonholonomic constraints. The implication for
the system model is that the forces and accelerations
it defines need to have continuous derivatives whose
analytic form can be determined.

Park, Bobrow and Ploen [lo] used the matrix exponen-
tial formulation of the dynamics and Lie group thwry
to express the equations of motion so that their analytic
gradients come automatically from the formulation of the
equations. This was implemented in the software p m
gram C-STOm4 [12], and used to solve hopping robot[l]
and human walking [16] problems, but in both these
cases, modeling the interaction with the environment
was specific to the particular system being simulated.
This formed the foundation for the current research -
the general contact model would be implemented as an
extension to C-STORM.

There are two general ways to deal with dynamic
models, that change due to making and breaking con-
tact with the environment: (1) having different dynamic
models for the different phases of motion and switching
between them as needed; or (2) having one dynamics
model throughout the motion, and modeling interactions
with the environment as external forces acting on the
system model [2], [4]. We.have chosen to use the latter,
as previously indicated. Yamane and Nakamura [I81 give
a good overview of how contact models are implemented.
There are two categories of contact models, penalty-
based methods and analytical methods. In the penalty-
based methods, which we use, contact forces are modeled
with virtual spring-damper systems at points of contact.
Wang, Kumar, and Abel 114) looked more closely at the
rigid body assumption in contact and how it can lead to
violations of conservation of energy and other conserva-
tion laws. They simulate mechanical systems undergoing
multiple frictional constraints with local, linearly elastic
properties at points of contact. Our contact model bas
similarities to this approach, as well as that of [ll], and
is a modification of the approach described in Tenaglia
et al [13].

11. GENERATING MOTIONS
We use an optimal control approach to generate mo-

tions for our robots. The motions include the internal
paths of the actuated robot joints, which we specify,
along with path of the robot through space that result
from these internal paths. Using optimal control to gener-
ate paths allows the paths to be good according to some

0-7803-8232-3/04/$17.00 @XI04 IEEE 3270

mailto:jvargasc,jebobrow}@uci.edu

objective measure, does not require a large amount of
a priori information about the motion, and allows the
motion to be specified in a more high-level manner. For
example, rather than try to figure out what a fuel efficient
path might look like, the objective measure (or cost
function) being minimized in the optimal control problem
can include the total fuel used throughout the motion.
By using different objective measures, motions can be
found with different characteristics, such as minimum
effort used, minimum time to travel a given trajectory,
or the maximum payload that can be moved from one
position to another (151.

To get the trajectories of the actuated robot joints
(the controls in the optimal control problem), we assume
the trajectories minimize some cost function, subject to
certain constraint equations. The cost function together
with the constraint equations define the optimal control
problem. Each unique cost function corresponds to a
separate motion, so specifying the cost function equates
to specifying the motion. The cost function is minimized
subject to the equations of motion of the system, bound-
ary conditions on joint positions and velocities, and joint
limits on the robot model. The ceneral form of cost

where J is the cost function, q"(t) is the position of
the actuated joints of the robot, qP(t) is the position of
the unactuated joints of the robot (some of which are
used to keep track of the position of the robot in space),
q p is the velocity of the unactuated joints of the robot,
q = (qa,qP), the set of all robot joints, and T" is the
motor torques on the active joints. The matrix is
the Jacobian of the contact point, and F is the external
force applied at the contact point (the normal and/or
friction forces, obtained from our contact model). The
summation of G$F represents the contribution of all the
external forces applied to the system.

We solve the optimal control problem with a direct
method: guess a solution qn(t) , integrate the equations
of motion with the guessed solution, evaluate J , and use
gradient information to correct the solution so that the
cost decreases until a minimum value for J is found. The
guessed solutions to the paths of the active joints qa(t)

are parameterized with quintic B-splines of the form
"

q"(t) =
t= l

where Bz,J are the spline basis functions, and a, are
the scaling coefficients. This q"(t) also defines the active
joint velocities and accelerations q"(t), q"(t). Moving the
active joints of the robot also causes the passive (unac-
tuated) joints q p to move along some trajectory which
can he solved for hy integrating the equations of motion
for the system. Because all the terms in the cost function
are then determined, the problem is transformed into one
of static parameter optimization. The spline parameters
defining q"(t) are the parameters that are varied during
the optimization.

In our C-STORM software, we have a recursive hy-
brid dynamics algorithm [E] which solves the dynamics
equations for the active joint torques TO and the passive
joint accelerations qp. This algorithm takes as input the
current state (q ,q) along with the active joint accelera-
tions qa and passive joint torques TP. Let the recursive
algorithm be referred to as g with

(7) "P) = 9(q ' "0 , q ,4,4 >+).

Given an input q"(t), rP(t) , and initial conditions
q(O),q(O), we use (7) to solve the differential equation

for q P (t) . The purpose of the third equation is to compute
the second term in the cost function S,'' L(qP, q p , T")dt.
The exact form of L differs depending on the cost
function being computed. Once the system has been
integrated forward in time, using this algorithm, the cost
function can be evaluated, and then the derivative of the
hybrid algorithm is used to get the gradient of the cost
function.

The derivative of the hybrid algorithm 1121 is used
to solve for the active joint torques, the passive joint
accelerations, and the derivatives of both of those with
respect to all of the current joint positions, velocities,
and accelerations. This algorithm takes the same inputs
as g, with the additional inputs of the derivatives of the
torques applied on the passive joints TP with respect to
all of the current joint positions, velocities, and acceler-
ations. Let the derivative of the recursive algorithm he
referred to as dg with:

3271 -

Fig. 2.
Fig. 1. Virtual Spring-Damper System Modeling Cant& Forces. ~ ~ d ~ l ,

Points, Vectors, and Unit Vectors used in General Collision

Because the dg algorithm requires the inputs s, g,
and g, the applied forces to the robot from the environ-
ment must be continuous and continuously differentiable.
The analytic gradient of the cost function can be calcu-
lated with the output from dg and passed to MATLAB’s
BFGS SQP function that performs parameter optimiza-
tion. With the cost function and its gradient, the spline
parameters can he varied so as to find the local minimum
value of J , and the corresponding controls.

111. CONTACT MODEL, NORMAL AND FRICTION
FORCES

In our contact model, contact between two bodies
results in two forces: a force in the direction normal to the
shared contact surfaces, and a friction force in the plane
tangential to the contact surfaces and in the opposite
direction of the velocity of the contact point. As in the
contact models of Tenaglia et al. [13], objects are modeled
as though they have a rigid core inside a uniformly thick
layer of compliant material. (This is like the “small region
of interpenetration” in Reichler et al. [ll].) The contact
forces from the interpenetration of two objects in the
compliant layer are modeled with virtual spring-damper
systems at the point of contact. For simplicity, the robot

?id and ?it , where & is the direction of the unit vector
between the near points and defines the normal direction,
and ?it is a unit vector in the direction perpendicular
to f i d , in the plane tangential to the contact surfaces,
pointing in the direction the robot is moving (see Fig.
2). The robot and obstacle may contact in more than
one place, hut for clarity the model will he discussed for
just one pair of bodies that is contacting in one location.

We use a distance algorithm which finds the near
points on each body in the pair - that is, the point on
body A that is closest to body B, and vice versa. The
point on the robot body closest to the obstacle is denoted
prob, and the point on the obstacle body closest to the
robot is denoted p,bs (see Figure 2). The length of the
vector from pda to prob, denoted d,,,, gives the distance
d between the two bodies, and is used to define the unit
vector iid:

The other value needed for the contact model, the veloc-
ity of p,& can be obtained using the Jacobian @(q,prot,)
and the vector of joint velocities q as follows:

1 1 = @.p(q,Prob)q (11)
L - J is assumed to he rigid, the compliant layer is assumed

to be on the obstacles it encounters (see Fig. l) , and the
obstacles are assumed to remain stationary. Additionally,
the forces are scaled by smoothing functions, to ensure
that they are continuous and continuously differentiable,
and that they begin at zero when contact is first made.

where v is the linear velocity of prob. The linear velocity
v is then decomposed into components in the normal
direction &, denoted U& and the tangential direction
f i t , denoted ut. The unit vector ?it is defined from the
tangential vel0city component as

~-

(12)
~ ut
ut = - To know when the robot first makes contact with the

forces), and how far into the layer it has penetrated
(which determines the deflection of the virtual spring),
the distance between the two bodies must be determined.
The relative velocity of the two bodies must also be
known, to calculate the virtual damper term in the
contact force model. For the contact model to be general,
it must be formulated in terms of the local directions

compliant layer (which is when to start applying contact l lvtll’
where ut = U - (U. ?id)&.

can be written as:
With these quantities defined, the normal contact force

(13) N = P(k(don - d) - CIIVdll)?id

where P is the smoothing function, k is the virtual spring
constant, e is the virtual damper constant, and do, is the

3272

thickness of the compliant layer around the obstacle. The
contact forces.are only calculated when d 5 don, as that
is when contact is defined as occurring.

The smoothing function P(d) operates in a thin outer
layer of the compliant,.region. P(d) is defined suchthat it
becomes active when the contact forces become nonzero,
a t do,, but has no influence past a depth of dof f . It is
defined as follows:

P(d) is constructed so as to ensure that the analytic
gradients of the equations of motion are continuous.
The coefficients (a0,a1,a2,a3) are written in terms of
(r lO ,~dof f) , and the constants do,, doff are set by the
user.

The friction force ffrie is defined using the normal
force, and has the form:

f f r i c = -~~IlNllyQt (18)

where p is the Coulomb friction coefficient (p = .3 for
our example), N is the normal force defined above and y
is the smoothing function for the friction force. y is given
by:

y(0) = 0, y'(0) = 1
y(urn,z) = 1, -/'(Urnaz) = 0

(21)
(22)

where U,,, is the value of llutll at which y goes to unity.
The normal and friction contact forces are found for

each pair of bodies in contact with each other, and are
included as F in the summation term in Eqn. (2) in
the optimal control problem formulation. To use these
forces with the algorithms g and dg (Eqns. (7) and
(S)), the derivative of the contact forces with respect to
the joint positions and velocities (q ,q) must be found.
As the contact forces are functions of the distance be-
tween colliding bodies and the relative velocity of those
bodies, their derivatives can be written with just the
derivatives ap, ,b /aq , ap,b,/aq, and by evaluating the
force expressions directly for the derivatives with respect
to 4. The next section discusses how the derivatives
ap,,b/aq, apobs /aq were evaluated.

IV. DERIVATIVE OF DISTANCE FUNCTIONS

Within our optimal control approach, we need the
derivatives of the contact forces N , ffric with respect to
the robot joint positions q(t) . N and ffric are functions
of the distance between the two bodies in contact, so
the necessary derivatives are those that describe how the
distance changes between the two bodies as the joints of
the robot move. If ap,,b/aq, ap,b,/aq are known; that
is sufficient to define the derivatives a N / a q , affr.ic/Oq;
therefore, those are the derivatives that will be formu-
lated here.

The change in the distance between bodies in contact
is not just a function of the robot joints q, but is also
affected by the shape of the surface of the robot and
obstacle. This means that ap,,b/aq is a function of both
the robot shape and the obstacle shape, and the same
holds true for a p d s / a q . Therefore, the equations that
describe the movement of p , d , p , b , for each shape pair
will be different (i .e . , the equations for a pair of spheres
will be different from those for a sphere and a cylinder).

For obtaining the derivatives (ap , ,b /aq , ap ,a , /aq) , we
require a set of equations that define prob,pobs in terms
of q and in the context of the shapes on which they exist.
One such set of equations can be obtained by defining an
optimization problem for which the solution is p , , b , p ~ ,
and where the surface shapes of the robot and obstacle
are expressed as constraints on the optimization [SI, [7].
The general optimization problem is set up as follows:

3273

subject to h(ProbrPobs) = o (24)
g(Pmb,Pobs) 5 0 (25)

where f is the objective function, h(prob,pobs) are the
equality constraints and g@rob,pob.) are the inequality
constraints. Not all of the inequality constraints apply
to p,,,,,,p,b, at the same time, so the subset of active
inequality constraints is denoted gi,i E I where I is
the set of indices of active inequality constraints. For
compactness, the vector x = [prab pobs IT will be used

The specific form of the constraints h, g depends on the
particular shapes of the robot and obstacle. However, for
all the shapes that can be modeled in this approach, the
constraints are linear in z which allows them be factored
as follows:

in place of probi p d S .

h (x) = K X + bi
gi(z) = DZ + bz

(26)
(27)

To obtain the solution x = (probrpobs) for the con-
strained optimization problem, the Kuhn-Tucker condi-

tions are solved:

of(.) + XTVh(z) + p T V g i (x) = 0
h(z) = 0

g,(s) = 0, i E I

Eqs. (28) - (30) can be written as [; Q KT ; DT :][;]=.[z]=[i] (31)

where K , D, b l , and bz are functions of the robot joint
positions q, and Q is obtained from vfT@rob,poba) =

To get ap,*/aq, @p,b,/aq, we take the partial deriva-
tive of Eq. (31) with respect to q and rearrange it to
obtain

Q[P ~ A PAS I .

We have expressions for H , b l , b z as functions of
q, so those partial derivatives are defined. The
vector [z X p I T equals H - ’ [0 bt ba I T , so
the equation can be solved to obtain 8x184 =

V. SIMULATION RESULTS

Once our method was implemented in software, we
chose a robot with which to test it. Initially, to check
that the general contact model equations were correct,
we duplicated some previous results with the hopping
lamp simulation [l]. The general contact model gave
the same final motion as the contact model specific to
the hopping lamp, confirming that the equations were
correct. This also showed that optimizations with the
general contact model took the same amount of time,
or very little more, to converge as optimizations with a
contact model specific to the robot being simulated.

To see that the contact model was in fact general, we
generated motions for the tumbler robot, a robot with
three links actuated by two motors, as shown in Fig. 3.
This is based on a real robot that has been built in our
lab and is still undergoing design iterations. Its ongoing
purpose is to serve as a testbed for the motions generated
through this method. From the position shown in Fig. 3,
each of the links with feet was allowed to rotate until
they impinged on the middle link.

Three motions were generated for the tumbler with this
method. These three motions, referred to as the hand-
stand, the roll, and the downstand, can be concatenated
in a particular order to form a longer sequence. Specifi-
cally, the handstand can be following by the downstand,
or the handstand can be followed by the roll. The first
of these patterns can be repeated in a loop, to form

[aP&% aPob8laq I T .

Fig. 3. The Tumbler Robot

Fig. 4. The Tumbler Robot going up into a handstand.

a gait for the tumbler. The individual motions can be
seen in Figs. 4 - 6. The optimizations took between
six and thirty minutes to converge to a local minimum,
depending on the motion. The simulations were run on a
Pentium 700 MHz PC, integrating seven state equations
and seventy-seven gradient equations for every iteration
of the process.

The handstand motion was generated using the cost
function

(33)
7T

J = (Q d t f) - 2) 2

where 93 is the rotation of the middle link, and the
position shown in Fig. 3 is where q3 = 0. This cost
function rewards motions that end with the middle link
vertical, which resulted in the motion shown in Fig. 4.
The initial and final positions for the motors, and thus
the legs of the robot, are specified when the initial guess
is made for the active joint paths q”(t) , and is done so for
all motions. The intermediate positions for the path qa(t)
are defined by the a, in (6) which are the parameters that
are varied during the optimization. The roll motion was
generated using the cost function

J = 5 0 (q l (t j)) - 9 d t j) (34)
where q1 measures translation in the horizontal direction
and q3 is the rotation of the middle link. The first term
rewards motion that travels to the left, and the second

3274

Fig. 5.
backwards roll.

The Tumbler Robot going from a handstand into a

Fig. 6.
with both feet on the ground.

The tumbler robot going from a handstand into a position

term rewards rotation. The number of contact points
with the ground change several times throughout the
motion.

The downstand motion was generated using the cost
function

where 93 is the rotation of the middle link, which started
this motion a t a value of r/2, so this term encourages
another rotation of r/2 from the initial position (or
ending with the middle link horizontal again, but rotated
x from the home position). The second term penalizes the
amount of motor torque used to perform the motion, so
it encourages a minimum amount of effort to be used in
completing the motion.

VI. CONCLUSION
In this paper, we presented an optimal control a p

proach to generating paths for robots, extended our
contact model to apply generally rather than specifically,
and discussed the derivatives that the general contact

model in conjunction with the optimal control a p
proach require. We simulated a tumbling robot to verify
that this method is valid.

This research shows that it is possible~ to incorporate a
general contact model into an optimal control approach
to generating robot trajectories, and still have optimiza-
tions converge reliably to a local minimum with exact
gradients of the cost function. Our contact model was
able to resolve multiple contacts between a robot and
its environment, and the use of smoothing functions on
the contact forces did not distort the plausibility of the
resulting motions. Despite adding some calculations to
the computational burden of the optimization, the time
taken to reach convergence was generally comparable to
that of our previous work.

Our future research will involve using this approach to
generate gaits for the tumbler robot mentioned bere, and
also to generate some motions for a hopping robot cur-
rently under construction in our lab. Another application
for this method is simulation of walking robots, studying
human locomotion, or finding trajectories for multiply-
legged systems. An intelligent way to connect the pieces
of motion generated with this approach is also an area of
interest for our ongoing research.

VII. REFERENCES
111 J . V. AIbru m d 1. E. Babror. "Optimal Motion Priniitivra for s 5 DOF Expert-

l"la."a.on. ZOO,
I21 J . Bsttr. "Suruw af Nvmcriral Methods for Trsj'lory Opch13sa'l-n~. l a u d

0IG"idOon. CO"<ral.nd Dynam... . "SI. 21. 2. pp'103-20,. ,887.
131 A. Bryson and Y . Ha. A m u e d Mti.ad Concml: O~~xmua%.an, Ed.moixon and Canlrd

nmlisphere ~ ~ b i i ~ h i ~ ~ carp.. ~ r i ~ ~ ~ i . PA.. 1 ~ 5 .
141 M B ~ ~ ~ . DC. ~ i ~ ~ k ~ ~ . M. nnrdt. o. "Dm sirYk. R. ~ ~ i i ~ ~ ~ h G . srhn.idi.

"Nonlinear Hybrid Dynamical Sy8Lims: Moddin%. Optimrl Control. and AP-
plirationa'~. M d d ' l ~ . *noiy.u on< D..lgn dH"bnd Sw,,nL.. ""I. 270. nF.* 111-535.
Sprinssr-v~rlag, moz.

111 Elmer 0 . Cilbert and Daniel W. Inhnann. ' 'D is tmoo functians and bhsir applic-
tion ID robat pech planning jn %he P'F'""CD afabstlclaa-. ,EBB l o v m d d I R 0 b O t i C .

meneat H ~ ~ ~ ~ ~ - ~ ~ ~ ~ . d ~ ~ ~ ~ ~ ~ t h . POOI IBEB ~ ~ t ~ ~ ~ i i ~ ~ ~ ~ can~~rmi~ nobai8csand

""A

3275

