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Abstract— We investigate approaches to balance
control of an under-actuated robot. The robot is simi-
far in structure to the Acrobot, but it is actuated with
a pneumatic cylinder rather than an electric motor,.
and it is capable of hopping. Regions of attraction of
the control system are studied, and two methods are
presented that increase the size of this region. One
is a different mechanical design, and the other is a
more robust control approach based on H., methods.
The result is a much improved balance controller for
a hopping robot.

I. INTRODUCTION

The focus of this paper is on the robust balance control
of an underactuated hopping robot. Because we desire
this robot to be inexpensive and simple to construct, as
well as light and powerful, we have chosen to actuate it
pneumatically. In addition to helping achieve these goals,
pneumatic cylinders can store energy, making them ideal
for hopping. One robot design that has potential as a
hopping robot is an Acrobot [1] with its base link free
to rotate, but unattached to the ground. The Acrobot
has become a popular control preblem for underactuated
robotic systems. In its upright position, the Acrobot can
be a model for a leg with a single knee actuator, and
zero actuation at the ankle. Traditionally, while the robot
is free to rotate about the ankle, the foot is fixed in
space. The so-called swing-up control problem deals with
bringing this leg (or gymnast [1]) from a hanging position
to an inverted position.

Berkemeier and Fearing [5], as well as Miyazaki et al.
(3] and Van de Panne [4], have studied the hopping Ac-
robot, in which the foot is free to rotate and unattached
to the ground, and the robot maintains an upright po-
sition during stance phases. In this case the balancing
control problem hecomes difficult, because while Spong

swings the robot to near equilibrium before activating -

his balancing controller, the hopping Acrobot must be
able to maintain its upright position after landing with
considerable kinetic energy.

Qur first attempts at building and balancing an ex-
perimental Acrobot under disturbances were a failure,
We found that under the control of a linear quadratic
regulator {LQR), the Acrobot had very low stability mar-
gins, and the relatively slow dynamics of our pneumatic
actuator exacerbated the problem. Work has been done
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to achieve more effective balancing controllers than the
LQR used by Spong (see {6],2],[7],[9}), showing signifi-
cant but nonetheless small improvement. Of the methods
we tested, the robust control formulation of [6] seemed
to perform the best, but it was still unsatisfactory. In
particular, all of these controllers have small regions of
attraction when applied to the nonlinear dynamics of the
acrobot. In order to increase the stability margins, Zerg-
eroglu, et al. [7] have modified the Acrobot dynamics by
adding a counterweight. Adding natural stability to the
robot, the counterweight has the drawback that it must
hang below the first link. In this paper we modify the
Acrobot design to increase its stability while maintaining
its feasibility as a hopping robot. In addition, we improve
on the balance control design by using H. methods to
create a compensator that is robust to the nonlinearities
of the system.

QOur robot is essentially an Acrobot with a wheel fixed
to the first link. Figure 1 shows one version of the
experimental hardware., This model can be thought of
as a person sitting on a rocking horse, influencing its
motion by swinging their torso back and forth. As well
as adding stability to the vertical balancing position, the
wheel offers a wider range of non-vertical equilibrium
points. These non-vertical positions are generally more
stable and allow for an upward swing of the center of
mass, making them better for a hopping robot.

II. REGION OF ATTRACTION

In order examine the performance of various controi
designs on the nonlinear system, we looked at their region
of attraction around the vertical balance equilibrium
point. We first used Spong’s model, whose parameters are
specified in Table 1 of [1]. To plot the four-dimensional
region of attraction for the nonlinear system in two
dimensions, we assumed that the two joint velocities
were zero. We then simulated the system, starting from
positions neighboring the equilibrium point. We termi-
nated the simulaticn using the following criteria: 1. The
robot’s first link must converge to within 5 degrees of
the equilibrium point within 20 seconds. 2. The robot’s
first link angle may not exceed £720°. For a given initial
condition, if these criteria were not satisfied during the
simulation, it was not included in the region of attraction
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The Robot

Fig. 1.

plot. Applying this criteria to the entire range of possible
initial conditions, Spong’s LQR (K = [-242.52 -96.33 -
104.59 -49.05]} yields the region of attraction shown in
the top plot of Fig 2. To obtain this figure, points were
tested on a grid of 10° spacing, with the stable points
marked using a hollow diamond and the equilibrium
point marked using a solid diamond.
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Fig. 2. Region of Attraction, Spong’s Robot, K = [-242.52 -96.33
-104.59 -49.05) (top), and K = [-253.3632 -106.7316 -116.0362 -
52.7513)

Xin and Kaneda [6] have outlined a robust control ap-
proach to designing a linear compensator, which yields K
= [-253.3632 -106.7316 -110.0362 -52.7513]. Again, using
Spong’s nonlinear model linearized around the vertical
equilibrium point, we obtain the region of attraction
shown in the bottom of Fig. 2. Note that the region of
attraction is larger than that of the original compensator.

Next we examine a modified acrobot, with the same

parameters as before, but with the addition of a massless
wheel whose rotation axis passes through first link, and
whose contact point on the outer rim is the same as
axis of rotation of joint 1 of the original Acrobot. (see
Fig. 5). Using the LQR control approach of {1] on the
new linearized system with Q and R matrices chosen to
give feedback gains of similar magnitude, Fig. 3 shows
the regions of attraction corresponding to wheels of radii
r = 5/8 meters and r = 11/16 meters. Although not.
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Fig. 3. Region of Attraction, Wheeled Acrobot, K = [196.9 147.8

119.4 70.4], r = 5/8 m (top) and K = [189.7 154.4 120.9 73.9], r =
11/16 m

‘shown, at r = 3/4 meters the region of attraction fills

the entire set of possible zero-velocity initial conditions.
And while the region of attraction starts to increase
significantly at around r = 5/8 meters, we noticed that
at smaller radii, the gain K decreases over constant Q
and R {with increasing radius). The increasing region
of attraction and decreasing gain with increasing radius
leads us to the conclusion that a wheeled Acrobot is
easier to balance than a comparable Acrobot. Having this
evidence, we decided to implement a wheeled Acrobot
using a pneumatic cylinder as an actuator.

III. THE KINEMATICS OF THE RoBOT

As previously stated, the robot we built is powered
by a pneumatic cylinder. Using pressure sensors we can
control the force that air exerts on the piston {see Sec-
tion VI). However, to implement a balance controller, it
is helpful to convert from force on the piston to torque at
the hinge. This can be a.ccomg]ished easily by examinin
the kinematics of the linkage. Figure 4 shows a drawing o
the linkage with right triangles overlayed. In the last two
drawings, the pertinent lengths and angles are labelled.
The trangle corresgonding to link 2 is labelled ABC,
with angles a, b, and c. Similarly, link 1 is given triangle
DEF with angles d, e, and f. S'is the full length of the
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Fig. 4.
(right}

Drawing of linkage (left), and geometric representation

cylinder, and s is the corresponding angle shown.

,fa

a = tan 1 —
B

D

d=tan " { =
E

dt+s—a~gp=0

- f£=9g3 +a—d
5=4/C% +F2_2CFcons * (1

- Now to find the relationship between torque at the hinge
andhforce on the piston, we equate the power exerted by
each.

942 = FS
Ty = Jigg)F 2

where J(g) = q—sz J may be found explicitly by differ-
entiating (1).
255 = 2CFisina
] =-(-;-6Fm ;-) g2

1
:Js;GFuina (3)

IV. BaLancing LQR

Fig. 5. . Important dimensions of the robot

After obtaining a suitable force controller, and a good
way of sensing the robot’s state (see [10]}, we turned our
* attention to obtaining a balance control law. Our ap-
proach relies on linear control techniques, which require
- that the model be linearized about various equilibrium
points. Gur model consists of two rigid links, with centers

of mass and moments of inertia determined experimen-
tally. We obtained the centers of mass by fitting the
equilibrium points of the model to the observed equilib-
rium points, using a nonlinear least-squares algorithm.
In order to obtain the linearized model, the nonlinear

equations of motion are first required.

Define i and 7 as unit vectors expressed in the fixed
frame in the horizontal and vertical directions, respec-
tively. The positions of the centers of mass of links 1 and
2, p; and p,, expressed in the fixed frame are

p1 = [{£1 — r)cos(gy ) — I,1 coBlq1 + @) — rqp}i
+[{L1 — r)sin{g1) = Lg1ein(ey + a)lj
P2 = [(L3 — rYeos(gy} + [og <o8(@1 + 92) — rq1]d
+[{L1 — r)sin(q1) + le2 sinlqr + a2)IF.

Differentiating p, and ps,

vy = Pp1 = [—(L1 - r)einlay)dy + Lelsin{gy +akiy — rqli
+[(Ly - r)coal(q1)dy — Lgy cos(qr + adgyli
va = pg = [~(L3 — »)sinlgy)dy — Lop#inlq + eaXdr + 42) — rq1 )3

+IL) cos(ay}d1 + Leg conlqy + 9241 + 42) — reoala1)ga]i

From the position and velocity functions we obtain

the kinetic and potential energy equations. Taking v =

T
viv, and vZ = vivy,

T = (1/20myu? + mgovd + 1143 4 13td1 + 42)%)
V = myg[ls sin(q1)] + mag{lqsinla1) + leg sinlq) + ¢2)].

where I; and I3 are the moment of inertia of links 1 and
2 about their mass centers, rGSpegtive]l;,r.

Defining o = £ a ] and application of Lagrange’s equa-
tions to T~ V for our system gives equations of the form

Mé + hig, Q) =7, (4)

where M is the usual mass matrix, and h(q,q) is
the remaining terms in Lagrange’s Equations including
forces due to gravity. The joint torque vector - = [ ° ],
represents zero torque at the first joint (it is unactuated)

and torque 79 at the second joint.

The joint torque 7o is not a control signal since it
results from gas flow into a cylinder. The differential
equation for 72 can be obtained as follows, From {2),

o = J{q2)F
T s =JF 4+ JF.
Using the feedback linearized force controller derived in
Section VI, F = —ky(F — Fy), where F; is the desired
cylinder force and ktp is a feedback gain, the above two
Q

equations yield the following first-order behavior for the
torque actuator
Fp = T (% - kp) + kpu (8)

. icoas Ssinas
J=COF - .
L] 52

and the control # is defined as u = JFy. .
It follows then that the nonlinear state space equations
for the system take the form '

where

a
M~ (r - hia. q) ] ,

= [ Tz(f—k,)+kpu

where x = [¢7, 47, m]7.
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Now our state equation can be linearized ahout
an e&uilibrium point xg to obtain the state matrices,
A B,CD.

83

A=—
Ox

9x

Bu

x=xp

or now we’ll assume we have aceess o the state apd
tia,t gr =‘2gx. ﬁi%%e‘ggs tvataf? an(}od wiﬁxlg)e i?ltentﬁy
and 0, respectively. The state equations are now of the

form
Ax = AAx + BAuw

¥ = &x

Next we seek an optimal gain K that minimizes the
cost function [i” AxTQAx + RAu?dt, for Q € RS,
Q = QT > 0,and R € R, R > 0. The closed-loop
feedback system that results from Au = —KAx is known
as a linear quadratic regulator, or LQR. Q and R define
the relative importance of each state and control in the

15 Q 0 0 0
. o 15 0 a 0
cost function. We chose P = o 0 1 0 o) and R =
[+] 4] 0 1 0
[+] a o a 1

0.1, resulting in K matrices of {46.0 64.0 25.5 15.7 3.5],
[49.0 68.6 25.2 16.0 3.7], and [50.8 71.1 25.1 16.1 3.8],
corresponding to set points of ¢ = 30°, 45°, and 60°.
The MATLAB function LQR will calculate K.

V. RoBusT CONTROL

A major drawback of the LQR approach is that our
system is actually nonlinear, and at large deviations
from the point of linearization, the controller is ineffec-
tive. Here we describe an H,, optimal controller that
is more robust to perturbations {(or uncertainties) in
the linearized model, making the system in turn more
robust to model nonlinearities. In addition, the robust
control perspective will let us minimize the required
bandwidth of cur actuator. This will allow us to discard
the state of the actuator in our model, since actuator
dynamics are high-frequency, leaving four states in the

model description.

We consider the elements of the A, B, C, and D state
space matrices obtained through linearization at different
- equilibrium points to be uncertain elements and we will
design a controller that is robust to these uncertainties.
We Jinearized about a few of the positions between ¢; =
30° and q; = 60° (see Figure 6), and obtained matrices

[+] Q 1 o

_ c 0 o0 1
4= a & 0 0
e d 0 o]

and

]

i
-
EGE-E-]

|

whose elements vary as a = a1 + a2 , .. , f = f1 + fad
with § = -1 to 1, for a set of known constants {ai, ..., f1},

and {as, ..., fa}.

Cemer of mass.
link 2
Center of mass, N '
®ink 1 L4 .

Fig. 6. Wheeled Acrebot balancing at 30, 45 and 60 degrees (angle
of first link from horizontal)

Now

dpy
Ak = Aax + Barg + “32
0

where dy; and dys are disturbanceés introduced to model

initial perturbations in the joint angles from equilibrium.
Written out, ,

Azg + dpy
A Azg +dpg
FT=| ayAcy 4 b1Ary 4 eyAry + legAry + baAry + eaATg)é
c1ary +dpAry + f1ATg + fepdzy +dpdrg + faATs]s
If we define
¢ =agdzx) +bhyAxg +eplTy
(g = epAzy + doArg + foldrg
€1 =418
£2 =28
then

Ay + dyy

i= Arg + dyg
e1Axr) +bibrg+ejdrTo + 43
c1arp +d1Arg + f14870 +Ep

ary 4 ng

ng, k=1,2,3,4 are noise signals app iézl”a; each sensor
and used to limit controller bandwidth.

We next define extended input and cutput vectors, W
and V, defined as

W = [{1 52 dbl dbg 1 Ny Nz Ny ATQ]T and

V = [21 22 23 11 ¥2 y3 va)T. The signals 21, 22, and z3
are the signals that will be used to measure how well our
controller performs. In this case we let 21, 22, and 23 be
Azxy, Azs, and A7 respectively.

Now we can express the transfer matrix P(s) which
satisfies V(s) = P(s)-X(s), using the standard notation

P =

Axy g
The output of our system is y = [ Arg+ing ]h, where

to denote the 4, B, C, and D matrices

C|D

of a state space realization for it. Specifically, P =

Axy Axz Axz Axyg & €2 dyy dpz my mz By Ry Amy
Axy 0 [} 1 0 | 0o o 1 1} 0 o 0 @ 0
Axa Q 0 0 1 I o o o 1 e 0 0 © 0
Axy ay by 4} o 1 1 o0 © 6 o 0 0 0 e
Ay e dq 0 o | e 1 o © 6 0 o 0 f
<1 az b a 0 ] o 0o o o 0o 0 0 0 ey
[ ©g dn a o | o o o o 0o 0 o 0 f3
] 1 0 a 0 1 0 0 0 0 0 a 1]} 0 o
zy ¢ 1 Q Q | 0 0 ) ) Q Q a 0 o
z3 o o a 0 | 0 0 0 0 o a 8} 0 1
¥1 1 ) Q a | 0 Q 0 0 1 a a Q 0
o o 1 a Q i o o 0 0 0 1 [ I ] 0
¥3 o 0 1 o | o4 e o0 0o 0 0 1 0 8
¥4 [ 0 a 1 | 0 o 0 o0 0 9 ¢ i 0

We have included labels on the rows and columns of
the matrix for the sake of readability.

Next, we consider filters that are applied to the perfor-
mance variables z;, 29, and z3. These filters will define the
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Fig. 7. "Hee Optimal Control Framework

range of frequencies that we want our system to perform
. well in. For the variables Az; and Az, we define butter-
worth low-pass filters wiow1(s) and wigwa(s) with cutoff
frequencies, f.) and f.p. These filters simply take into
account the actual bandwidth of the system. Our control
variable, Ary, is passed through a high-pass butterworth
filter wp(s) with cutoff frequency f,. This is the filter
. which helps to penalize higher bandwidth controllers,
since we only look at the high-frequency component of
the control signal. The final filter is wpign, a high-pass

filter that is applied to the four noise inputs. This comes

from the assumption that the noise on our four signals is
high-frequency noise, which adds no steady-state offset.
We next obtain the controller from y{= Ax) to Am
that minimizes the Hy, norm between the remaining
variables in W and V. The controller is first tested
- on the nonlinear simulation and eventually applied on
the real system to verify that indeed works. By tuning
various design parameters, such as f¢1, feo, and fr., and
repeating the process, we obtained a robust controller
with satisfactory performance as further discussed in
Section VIL

V1. FEEDBACK LINEARIZATION OF THE PNEUMATIC
TORQUE CONTROL SUBSYSTEM

The LQR and robust controller discussed both take-

joint torque as the input. As we have stated, in order
to control this torque, we must control the force that
air exerts on the piston. Since the actual input was
servovalve flow, we needed to design a fast inner feedback
loop that provided the torque or force required required
by either the LQR or the robust control compensators.
This in turn requires that the pressure difference across
each side of the actuator piston be sensed and controlled.

The following are steps to obtaining the force con-
troller: Referring to Fig. 8, A is the area of the piston,

fhll ’"n|
L 1
r Py

It—— W o e 8- K=

Fig. 8 Pneumatic Piston

with Ao being the area of the rod. P refers to pressure,
with P, being atmospheric pressure, and V is volume
with ¥, being the volume of the plumbing outside the
cylinder. Flow rate is 1, and x is the piston position,
which varies from 0O to s. The subscripts 1 and 2 refer to

Sides 1 and 2.
ssuming air is an ideal gas, we refer to Bobrow and

McDonell’s derivation of rate of pressure in a pneumatic

cylinder [11].
X My AT P11y
PL=k (—'—‘;l—"' - i ) (6)

. wigRT  Poln
Ppok | 2201 202 o)
vz Va2

where k = (Ef) = 1.4. In terms of piston position x,

Similarly,

Vi = Ajz+ Vip
Vz = Ag(a —x) + Vo
V) = Ayd
Vg = —Agd
Also assume:

TRy = clu
g = —egu (&)
where u is the servo-valve input and ¢; is the assaciated

valve constant. Using this information we can express F,
the force on the piston differentiated once, as

. Ay Vg + AaV,
Fo=kyu (——1 ] l)+G‘(z-|J") (9)
vivz
where ViA PV A
P
Glr, 2y s k1100 4 727372
Vi Vo .
and .
k) =kRTey

Now let ¢ = F — Fy where Fy is the_desired force.
Assuming that our controller behaves as follows,

F = —kpe+ Fyg (10}

and assuming that Fy = 0, and setting k, = EkI and
renaming k, = %, we can obtain the control law, u =

[—k,,(plA, —~ PgAz — PoAg — Fg)+ ko (m - f‘-"i?ﬂ)] kg (x)

i Va an
where k,(z) = g&—‘}:ﬁm . Because our valve input
u is approximately proportional to the wvalve current,
(11) may be fed into a current controller. k, and k,
are essentially tunable parameters (> 0). Note from (10)
that k;, directly governs the response time of the force
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control subsystem. The constant &, in {11) governs the
feed-forward control due to motion of the piston. It can
be set experimentally by setting Fy = 0, and manually
moving the piston sinusoidally, and adjusting k, until the
amplitude of the resulting sinusoidal force on the piston is
minimized. The term k4 in (11) is essentially a nonlinear
loop gain that varies as the piston position x. Note that
kq(z) is a minimum at the ends and a maximum near the
cylinder’s mid-stroke position. After some tuning of these
gains, we were able to achieve a bandwidth of about 10
Hz. for this force control subsystem.

VII. RESULTS
A. Balancing LQR

For our experimental results we manually perturbed
the system from its equilibrium point and observed the
response. If the system quickly returned to this equilib-
rium point, it was called “good”. We experimented with
LQR controllers for both the five state model discussed
and a four state model, which ignored the actuator
dynamics. Both produced good results, as can be seen
in Figure ¢ (a) and (b). For the five state LQR, we
turned k, down significantly from the four state model.
The purpose for this was to show that the model of the
actuator dynamics could be used to compensate for a
slow inner force control loop. The four state LQR took
advantage of a fast inner force control loop, and we were
able to get acceptable performance. As we stated before,
the five state LQR for the set point ¢ = 45° had for K
the value [49.0 68.6 25.2 16.0 3.7]. This K gives a control
torque in the units of Nm, and assumes the states are in
units of rad, rad/s, and Nm. The four state LQR has for
K values [11.93 17.26 6.58 4.0716], with the same units.

B. Robust Control

The best controller we were able to find, in terms of
performance and stability, was the robust controller. The
controller we used has a 19th order state space represen-
tation before any model reduction was attempted. The
results of perturbing the system with this controller are
shown in 9 (c).

VIII. CONCLUSION

We studied the regions of attraction of various control
laws on the Acrobot system and found them unaccept-
ably small for balance control using pneumatic actuators.
We developed a feedback linearizing inner torque control
system for the pneumatic actuator, and included these
dynamics in the control design. We then added a circular
arc to the bottom of the Acrobot to increase its region
of attraction for balance control. The resulting robot
has nice balance control characteristics and is capable
of hopping. The pneumatic actuator is

(a)

(b}

c}

q2 Y
e 3

Fig. 9. Three Balance Control Laws. All plots are versus time
(dependent axis), with each major division representing 1 second.
Plots show the result of perturbing the robot by hand and allowing
it to return to equilibrium. {(a) LQR, 5 state model. (b} LQR, 4
state model. (c) Robust Controller, 4 state model

light-weight and is capable of delivefing high power
levels.
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