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Abstmct- We investigate approaches to balance 
control of an under-actuated robot. The robot is simi- 
lar in structure to  the Acrobot, but it is actuated with 
a pneumatic cylinder rather than an electric motor, 
and it is capable of hopping. Regions of attraction of 
the control system are studied, and two methods are 
presented that increase the size of this region. One 
is a different mechanical design, and the other is a 
more robust control approach based on H ,  methods. 
The result is a much improved balance controller for 
a hopping robot. 

I. INTRODUCTION 
The focus of this paper is on the robust balance control 

of an underactuated hopping robot. Because we desire 
this robot to be inexpensive and simple to construct, as 
well as light and powerful, we have chosen to actuate it 
pneumatically. In addition to helping achieve these goals, 
pneumatic cylinders can store energy, making them ideal 
for hopping. One robot design that has potential as a 
hopping robot is an Acrobat [1] with its base link free 
to rotate, but unattached to the ground. The Acrobat 
has become a popular control problem for underactuated 
robotic systems. In its upright position, the Acrobat can 
be a model for a leg with a single knee actuator, and 
zero actuation at t.he ankle. Traditionally, while the robot 
is free to rotate about the ankle, the foot is fixed in 
space. The swcalled swing-up control problem deals with 
bringing this leg (or gymnast [l]) from a hanging position 
to an inverted position. 

Berkemeier and Fearing 151, as well as Miyazaki et al. 
[3] and Van de Panne [4], have studied the hopping Ac- 
robot, in which the foot is free to rotate and unattached 
to the ground, and the robot maintains an upright pw 
sition during stance phases. In this case the balancing 
control problem becomes difficult, because while Spong 
swings the robot to near equilibrium before activating 
his balancing controller, the hopping Acrobat must be 
able to maintain its upright position after landing with 
considerable kinetic energy. 

Our first attempts at building and balancing an ex- 
perimental Acrobot under disturbances were a failure. 
We found that under the control of a linear quadratic 
regulator (LQR), the Acrobat had very low stability mar- 
gins, and the relatively slow dynamics of our pneumatic 
actuator exacerbated the problem. Work has been done 

to achieve more effective balancing controllers than the 
LQR used by Spong (see [6],[2],[7],[9]), showing signifi- 
cant but nonetheless small improvement. Of the methods 
we tested, the robust control formulation of 161 seemed 
to perform the best, but it was still unsatisfactory. In 
particular, all of these controllers have small regions of 
attraction when applied to the nonlinear dynamics of the 
acrobat. In order to increase the stability margins, Zerg- 
erogln, et al. (71 have modified the Acrobat dynamics by 
adding a counterweight. Adding natural stability to the 
robot, the counterweight has  the drawback that it must 
hang below the first link. In this paper we modify the 
Acrobot design to increase its stability while maintaining 
its feasibility as a hopping robot. In addition, we improve 
on the balance control design by using Hm methods to 
create a compensator that is robust to the nonlinearities 
of the system. 

Our robot is essentially an Acrobot with a wheel ked 
to the first link. Figure 1 shows one version of the 
experimental hardware. This model can be thought of 
as a person sitting on a rocking horse, infiuencing its 
motion by swinging their torso back and forth. As well 
as adding stability to the vertical balancing position, the 
wheel offers a wider range of non-vertical equilibrium 
points. These non-vertical positions are generally more 
stable and allow for an upward swing of the center of 
mass, making them better for a hopping robot. 

11. REGION O F  ATTRACTION 
In order examine the performance of various control 

designs on the nonlinear system, we looked at their region 
of attraction around the vertical balance equilibrium 
point. We first used Spang’s model, whose parameters are 
specified in Table 1 of [l]. To plot the four-dimensional 
region of attraction for the nonlinear system in two 
dimensions, we assumed that the two joint velocities 
were zero. We then simulated the system, starting from 
positions neighboring the equilibrium point. We termi- 
nated the simulation using the following criteria: 1. The 
robot’s first link must converge to within 5 degrees of 
the equilibrium point within 20 seconds. 2. The robot’s 
first link angle may not exceed i720”. For a given initial 
condition, if these criteria were not satisfied during the 
simulation, it was not included in the region of attraction 
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parameters as before, hut with the addition of a massless 
wheel whose rotation axis passes through first link, and 
whose contact point on the outer rim is the same as 
axis of rotation of joint 1 of the original Acrobot. (see 
Fig. 5). Using the LQR control approach of [l] on the 
new linearized system with Q and R matrices chosen to 
give feedback gains of similar magnitude, Fig. 3 shows 
the regions of attraction corresponding to wheels of radii 
r = 5/8 meters and r = 11/16 meters. Although not 

Fig. 1. The Robot 

plot. Applying this criteria to the entire range of possible 
initial conditions, Spong's LQR (K = [-242.52 -96.33 - 
104.59 -49.051) yields the region of attraction shown in 
the top plot of Fig 2. To obtain this figure, points were 
tested on a grid of 10" spacing, with the stable points 
marked using a hollow diamond and the equilibrium 
point marked using a solid diamond. 

t -...--.-_I <- 
Fig. 2. Region of Attraction, Spong's Robot, K = 1-242.52 -96.33 
-104.59 -49.051 (top), and K = [-253.3632 -106.7316 -110.0362 - 
52.75131 

Xin and Kaneda [6] have outlined a robust control a p  
proach to designing a linear compensator, which yields K 
= 1-253.3632 -106.7316 -110.0362 -52.75131. Again, using 
Spong's nonlinear model linearized around the vertical 
equilibrium point, we obtain the region of attraction 
shown in the bottom of Fig. 2. Note that the region of 
attraction is larger than that of the original compensator. 

Next we examine a modified acrobot, with the same 
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Fig. 3. Region of Attraction, Wheeled Acrobot, K = 1196.9 147.8 
119.4 70.41, r = 5/8 m (top) and K = [189.7 154.4 120.9 73.91, r = 
11/16 m 

shown, a t  r = 3/4 meters the region of attraction fills 
the entire set of possible zero-velocity initial conditions. 
And while the region of attraction starts to increase 
significantly at around r = 5/8 meters, we noticed that 
a t  smaller radii, the gain K decreases over constant Q 
and R (with increasing radius). The increasing region 
of attraction and decreasing gain with increasing radius 
leads us to the conclusion that a wheeled Acrohot is 
easier to balance than a comparable Acrobot. Having this 
evidence, we decided to implement a wheeled Acrobot 
using a pneumatic cylinder as an actuator. 

111. THE KINEMATICS OF THE ROBOT 

As previously stated, the robot we built is powered 
by a pneumatic cylinder. Using pressure sensors we can 
control the force that air exerts on the piston (see Sec- 
tion VI). However, to implement a balance controller, it 
is helpful to convert from force on the piston to torque at  
the hinge. This can be accom lished easily by examinin 
the kinematics of the linkage. Figure 4 shows a drawing o$ 
the linkage with right triangles overlayed. In the last two 
drawings, the pertinent lengths and angles are labelled. 
The triangle corres onding to link 2 is labelled ABC, 
with angles a, h, an$ c. Similarly, link 1 is iven trian le 
DEF with angles d, e, and f. S is the fullqength of &e 



of mass and moments of inertia determined experimen- 
tally. We obtained the centers of mass by fitting the 
equilibrium points of the model to the observed equilib- 
rium points, using a nonlinear least-squares algorithm. 
In order to obtain the linearized model, the nonlinear 
equations of motion are first required. 

Define i and j as unit vectors ex ressed in the fixed 
frame in the horizontal and vertica? directions respec- 
tively. The positions of the ceiiters of mass of links 1 and 
2, p1 and pz, expressed in the fixed frame are 

, 
, 

P, = IKL, - .I CO. (q* )  - le> C 4 . l  + 0 )  - ' P l i i  

+ K L L  - ~ ) a i n ( q ~ l  - L . i * i d * i  +al i i  
PZ = ! (=I  - - ) = ~ - ( . ~ ) + ~ . s c * d s i  +.2) - - i l l 5  

+KL, - 7 )  .i"(sll i I C %  ' W W  + P Z I l f .  

Fig. 4. 
(right) 

Drawing of linkage (left), and geometric representation 

cylinder, and s is the corresponding angle shown. 

" = tan-'  (a) 

(1) 

Now to find the relationship between torque at  the hinge 
and force on the piston, we equate the power exerted by 
each. 

'2c2 = FS 

'2 = J I m I F  (2)  

where J(q2)  = 2. J may be found explicitly by differ- 
'I2 

entiating (1). 

IV. BALANCING LQR 

Differentiating p1 and pz, 
"1 I e ,  = i-(L, - r1 .i"l.?,IU1 + '., sin(q, + = ) e ,  - -i,V 

+KL, - 7 ) ? " S k , k I  - L,1 E d 9 ,  + *)*,I! 
P l  =I-(', - -l*i"(q,)el - L . 2 c W . l  + % l ( G *  + # I )  - -*,It 

+!'I ro.(s,)P1 + L.2 m l p ,  + s z x e ,  + $2) - ~ - * ( ~ , l * ~ l ~  

From the position and velocity functions we obtain 
the kinetic and potential energy equations. Taking U: = 
vT.1 and U; = v T v ~ ,  

"2 

T = (' /Z)(rn*": + ."z"; + I * . :  + I * ( * >  + 92P) 

where Il and Iz are the moment of inertia of links 1 and 
2 about their mass centers, respective1 

Defining \ ;; ] and application oTLagrange's equa- 
tions to  T - V or our system gives equations of the form 

Ms + hlg, 41 = 7.  

v = m,sl lc ,a in(s , ) l  +mZ.l ' lnin(' l l )+l .Zai"(p,  + S 2 ) 1 .  

(41 

where M is the usual mass matrix, and h(q,q) is 
the remaining terms in Lagrange's Equations including 
forces due to gravity. The joint torque vector = [ 2Q 1, 
represents zero torque at  the first joint (it is unactuated) 
and torque TZ at  the second joint. 

The joint torque rz is not a control signal since it 
results from gas flow into a cylinder. The differential 
equation for 72 can be obtained as follows. From (2), 

i z  = I (qz1F 

= i F  + J + .  

Using the feedback linearized force controller derived in 
Section VI, F = -kpp!F - F d ) ,  where Fd is the desired 
cylinder force and k IS a feedback gain, the above two 
equations yield the howing  first-order behavior for the 
torque actuator 

( 5 )  

where 

Fig. 5 . .  Important dimensions of the robot 

and the control U is defined +s U = JFd. 
After obtaining a.suitable force controller, and a good 

way of sensing the robot's state (see [lo]), we turned our 
attention to obtaining a balance control law. Our ap- 
proach relies on linear control techniques, which require 
that the model be linearized about various equilibrium 
points. Our model consists of two rigid links, with centers 

It  follows then that the nonlinear state space equations 
for the system take the form 

1 r 

7 2  (f ~ +) + *P 
i = [ M - ' ( T -  h(s .S) l  , 

where x = [qT, qT, rzIT. 
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Now our state equation can be linearized about 
an e uilibrium point x g  to obtain the state matrices, A,B,OI,D. 

or now e'll sume we h ve st. e and 
tTat { =  ~ x .  %' is means hatVY%3h%Pfrg e i 2 entity 
and , respectively. The state equations are now of the 
form 

AX = AAX + eau 

s = AX 

Next we seek an optimal gain K that minimizes the 
cost function J p A x T Q A x +  RAu2dt, for Q E R5x5, 
Q = QT 2 0, and R E R, R >, 0. The closed-loop 
feedback system that results from Au = -KAx is known 
as a linear quadratic regulator, or LQR. Q and R define 
the relative importance of each state and control in the 

( i  i i ! ) a n d R =  

cost function. We chose P = 

0.1, resulting in K matrices of 46.0 64.0 25.5 15.7 3.51, 
[49.0 68.6 25.2 16.0 3.71, and [50.8 71.1 25.1 16.1 3.81, 
corresponding to set points of q1 = 30", 45O, and 60'. 
The MATLAB function LQR will calculate K .  

V. ROBUST CONTROL 
A major drawback of the LQR approach is that our 

system is actually nonlinear, and at  large deviations 
from the point of linearization, the controller is ineffec- 
tive. Here we describe an H ,  optimal controller that 
is more robust to perturbations (or uncertainties) in 
the linearized model, making the system in turn more 
robust to model nonlinearities. In addition, the robust 
control perspective will let us minimize the required 
bandwidth of our actuator. This will allow us to discard 
the state of the actuator in our model, since actuator 
dynamics are high-frequency, leaving four states in the 

1 5 0 0 0 "  

model description. 
We consider the elements of the A B C, and D state 

space matrices obtained through line&izktion at  different 
equilibrium points to be uncertain elements and we will 
desi n a controller that is robust to these uncertainties. 
We finearized about a few of the positions between q1 = 
30" and qi = 60" (see Figure 6), and obtained matrices 

D o l o  

and 

whose elements vary as a = al + a26 , .., , f = f l  + f26 
with 6 = -1 to 1, for a set of known constants {U], ..., fl}, 
and {as ,  ..., f2}. 

Fig. 6. Wheeled Acrobot balancing at 30, 45 and 60 degrees (angle 
of first link from horizontal) 

where d b 1  and dt,2 are disturbances introduced !o model 
initial perturbations in the joint angles from equilibrium. 
Written out, 

The output of our system is y = 

n k ,  IC = 1 ,2 ,3 ,4  are noise signals 
and used to limit controller bandwidth. 

and V, defined as 
We next define extended input and output vectors, W 

w = [ti d b i  d b 2  711 712 713 714 AnlT and 
V = [q 22 23 y1 y2 y3 y4IT. The signals 21, 22,  and 23 

are the signals that will be used to measure how well our 
controller performs. In this case we let 21, 22,  and 23 he 
AZI, AZZ, and AQ respectively. 

Now we can express the transfer matrix P(s) which 
satisfies V(s) = P(s) .X(s), using the standard notation 

P = [y] to denote the A, B, C ,  and D matrices 

of a state space realization for it. Specifically, P = 
C D  

A-1 Ax2 A-8 A-4 € 1  €2  d b z  "I "z "3 "4 A i z  
D 0 I " I " " 1 O D D O O "  
0 0 0 1 I " " " 1 O O D " "  

- - - - - - - - - - - - - - 

We have included labels on the rows and columns of 
the matrix for the sake of readability. 

Next, we consider filters that are applied to the perfor- 
mance variables Z I , Z ~ ,  and 23. These filters will define the 
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Fig. 7. - H ,  Optimal Control Ramework 

range of frequencies that we want our system to perform 
well in. For the variables AZI and AZZ we define butter- 
worth low-pass filters ~ ~ ~ ~ ~ ( s )  and W I ~ ~ Z ( S )  with cutoff 
frequencies, fcl and fez. These filters simply take into 
account the actual bandwidth of the system. Our control 
variable, ATZ, is passed through a high-pass butterworth 
filter W h ( S )  with cutoff frequency f h .  This is the filter 
which helps to penalize higher bandwidth controllers, 
since we only look at the high-frequency component of 
the control signal. The final filter is Whtghr a high-pass 
filter that is applied to the four noise inputs. This comes 
from the assumption that the noise on our four signals is 
high-frequency noise, which adds no steady-state offset. 
We next obtain the controller from y(= Ax) to Arz 
that minimizes the H, norm between the remaining 
variables in W and V. The controller is first tested 
on the nonlinear simulation and eventually applied on 
the real system to verify that indeed works. By tuning 
various design parameters, such as fcl, fez, and f h e ,  and 
repeating the process, we obtained a robust controller 
with satisfactory performance as further discussed in 
Section VII. 

VI. FEEDBACK LINEARIZATION OF THE PNEUMATIC 
TORQUE CONTROL SUBSYSTEM 

The LQR and robust controller discussed both take 
joint torque as the input. As we have stated, in order 
to control this torque, we must control the force that 
air exerts on the piston. Since the actual input was 
servovalve flow, we needed to design a fast inner feedback 
loop that provided the torque or force required required 
by either the LQR or the robust control compensators. 
This in turn requires that the pressure difference across 
each side of the actuator piston be sensed and controlled. 

The following are steps to obtaining the force con- 
troller: Referring to Fig. 8, A is the area of the piston, 

Fig. 8. Pneumatic Piston 

with A0 being the area of the rod. P refers to pressure, 
with PO being atmospheric pressure, and V is volume 
with V0 being the volume of the plumbing outside the 
cylinder. Flow rate is h, and x is the piston position, 
which varies from 0 to s. The subscripts 1 and 2 refer to 
S i p  1 and 2.. . 

ssuming air is an ideal gas, we refer to Bobrow and 
McDonell's derivation of rate of pressure in a pneumatic 
cvlinder 1111. 

, 

Similarlv. 
I71 

where k = ( z )  = 1.4. In terms of piston position x, 

VI = A i r  + Vi0 

"2 = A i l "  ~ *) + Vzo 
v, = 1,' 

Vz = -A,, 

Also assume: 
rnl = E 1 "  

m 2 = -  =I"  18) 

where u is the servwvalve input and c1 is the associated 
valve constant. Using this information we can express F ,  
the force on the piston differentiated once, as 

and 
= k R T c l  

Now let e = F - Fd where Fd is the desired force. 
Assuming that our controller behaves as follows, 

F = -lips + Pd 

and assuming that Iid = 0, and setting k, = 1 and 

I101 

renaming kp = 2, we can obtain the control law, U = 

. .  
. Because our valve input 

to the valve current, 
(11) may be fed into a current controller. kp and k, 
are essentially tunable parameters (2  0). Note from (10) 
that I C ,  directly governs the response time of the force 
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control subsystem. The constant k, in (11) governs the 
feed-forward control due to motion of the piston. It can 
be set experimentally by setting Fd = 0, and manually 
moving the piston sinusoidally, and adjusting k, until the 
amplitude of the resulting sinusoidal force on the piston is 
minimized. The term kg in (11) is essentially a nonlinear 
loop gain that varies as the piston position x. Note that 
k,(z) is a minimum at the ends and a maximum near the 
cylinder's mid-stroke position. After some tuning of these 
gains, we were able to achieve a bandwidth of about 10 
Hz. for this force control subsystem. 

VII. RESULTS 
A .  Bdaccing LQR 

For our experimental results we manually perturbed 
the system from its equilibrium point and observed the 
response. If the system quickly returned to this equilib- 
rium point, it was called "good". We experimented with 
LQR controllers for both the five state model discussed 
and a four state model, which ignored the actuator 
dynamics. Both produced good results, as can be seen 
in Figure 9 (a) and (b). For the five state LQR, we 
turned kp down significantly from the four state model. 
The purpose for this was to show that the model of the 
actuator dynamics could be used to compensate for a 
slow inner force control loop. The four state LQR took 
advantage of a fast inner force control loop, and we were 
able to get acceptable performance. As we stated before, 
the five state LQR for the set point q1 = 45' had for K 
the value 149.0 68.6 25.2 16.0 3.71. This K gives a control 
torque in the units of Nm, and assumes the states are in 
units of rad, rad/s, and Nm. The four state LQR has for 
K values [11.93 17.26 6.58 4.07161, with the same units. 

B. Robust Control 
The best controller we were able to find, in terms of 

performance and stability, was the robust controller. The 
controller we used has a 19th order state space represen- 
tation before any model reduction was attempted. The 
results of perturbing the system with this controller are 
shown in 9 (c). 

VIII. CONCLUSION 
We studied the regions of attraction of various control 

laws on the Acrobot system and found them unaccept- 
ably small for balance control using pneumatic actuators. 
We developed a feedback linearizing inner torque control 
system for the pneumatic actuator, and included these 
dynamics in the control design. We then added a circular 
arc to the bottom of the Acrobot to increase its region 
of attraction for balance control. The resulting robot 
has nice balance control characteristics and is capable 
of hopping. The pneumatic actuator is 

Fig. 9. Three Balance Control Laws. All plots are versus time 
(dependent axis), with each major division representing 1 second. 
Plots show the result of perturbing the robot by hand and allowing 
it to return to equilibrium. (a) LQR, 5 state model. (b) LQR, 4 
state model. (c) Robust Controller, 4 state model 
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