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Abstract— We develop a numerically efficient algorithm for
computing controls for nonlinear systems that minimize a
quadratic performance measure. We formulate the optimal
control problem in discrete-time, but many continuous-time
problems can be also solved after discretization. Our ap-
proach is similar to sequential quadratic programming for
finite-dimensional optimization problems in that we solve the
nonlinear optimal control problem using sequence of linear
quadratic subproblems. Each subproblem is solved efficiently
using the Riccati difference equation. We show that each
iteration produces a descent direction for the performance
measure, and that the sequence of controls converges to a
solution that satisfies the well-known necessary conditions for
the optimal control.

I. INTRODUCTION

As the complexity of nonlinear systems such as robots
increases, it is becoming more important to find controls
for them that minimize a performance measure such as
power consumption. Although the Maximum Principle [1]
provides the optimality conditions for minimizing a given
cost function, it does not provide a method for its nu-
merical computation. Because of the importance in solving
these problems, many numerical algorithms and commercial
software packages have been developed to solve them
since the 1960’s [2]. The various approaches taken can
be classified as either indirect or direct methods. Indirect
methods explicitly solve the optimality conditions stated
in terms of the maximum principle, the adjoint equations,
and the tranversality (boundary) conditions. Direct methods
such as collocation [3] techniques, or direct transcription,
replace the ODE’s with algebraic constraints using a large
set of unknowns. These collocation methods are powerful
for solving trajectory optimization problems [4], [5] and
problems with inequality constraints. However, due to the
large-scale nature of these problems, convergence can be
slow. Furthermore, optimal control problems can be difficult
to solve numerically for a variety of reasons. For instance,
the nonlinear system dynamics may create an unfavorable
eigenvalue structure of the Hessian of the ensuing optimiza-
tion problem, and gradient-based descent methods will be
inefficient.

In this paper, we focus on the case of finding opti-
mal controls for nonlinear dynamic systems with general
linear quadratic performance indexes (including tracking
and regulation). The discrete-time case is considered but

continuous-time optimal control problems can handled after
discretization. We are interested primarily in systems for
which the derivatives of the dynamic equations with respect
to the state and the control are available, but whose second
derivatives with respect to the states and the controls are too
complex to compute analytically. Our algorithm is based
on linearizing the system dynamics about a input/state
trajectory and solving a corresponding linear quadratic
optimal control problem. From the solution of the latter
problem, we obtain a search direction along which we
minimize the performance index by direct simulation of
the system dynamics. Given the structure of the proposed
algorithm, we refer to it in the sequel as the Sequential
Linear Quadratic (SLQ) algorithm. We prove that search
directions produced in this manner are descent directions,
and that this algorithm converges to a control that locally
minimizes the cost function. Solution of the linear quadratic
problem is well-known, and can be reliably obtained by
solving a Riccati difference equation.

Algorithms similar in spirit are reported in [6], [7],
[8], [9]. Such algorithms implement a Newton search,
or asymptotically Newton search, but require that 279-
order system derivatives be available. Newton algorithms
can achieve quadratic local convergence under favorable
circumstances such as the existence of continuous 3"?-order
or Lipschiz continuous 27d_order derivatives, but cannot
guarantee global convergence (that is convergence from any
starting point to a local minimum) unless properly modified.
Many systems are too complex for 2"?-order derivatives to
be available or even do not satisfy such strong continuity
assumptions (e.g. see Section IV for examples.) In such
cases, Newton’s method cannot be applied, or the quadratic
convergence rate of Newton’s method does not material-
ize. We have found that our approach efficiently solves
optimal control problems that are difficult to solve with
other popular algorithms such as collocation methods (see
Example, Section IV.) More specifically, we have observed
that our algorithm exhibits near-quadratic convergence in
many of the problems that we have tested. Indeed, it
is shown in the full version of the paper [10], that the
proposed algorithm can be interpreted as a Gauss-Newton
method, thus explaining its excellent rate of convergence
properties observed in simulations. Thus although many of
the alternative methods ([2], [12], [11], [8]) can be applied
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to a broader class of problems, our SLQ algorithm provides
a fast and reliable alternative to such algorithms for the
important class of optimal control problems with quadratic
cost under general nonlinear dynamics, while relying only
on first derivative information.

II. PROBLEM FORMULATION AND BACKGROUND
RESULTS

We consider the following general formulation of
discrete-time optimal control problems.

Minimize

N-1
J = ¢@@N)+ > Lz(n),u(n),n) (1)
u(n), z(n) —

subject to z(n+1) = f(z(n),u(n)); z(0) = zo (2)

In the formulation above we assume a quadratic perfor-
mance index, namely:

L(z(n), u(n),n) = %[I(n) —2°(m)]TQ(n)[z(n) — 2°(n)] +
[u(n) — u®(n)]" R(n)[u(n) —u’(n)]  (3)

and .
P(z) = 5[1 - z°(N)]TQ(N)[z — z°(N)] 4)

In (3) and (4), u°(n), z°(n), n = 1,... N are given
control input and state target sequences. In standard optimal
regulator control problem formulations, u°(n), 2°(n) are
usually taken to be zero with the exception perhaps of
2°(N), the desired final value for the state. The formulation
considered here addresses the more general optimal tracking
control problem and is required for the linear quadratic step
in the proposed algorithm presented in Section IIIL.1.

A. First Order Optimality Conditions

We next briefly review the first order optimality condi-
tions for the optimal control problem of (1) and (2), in
a manner that brings out certain important interpretations
of the adjoint dynamical equations encountered in a control
theoretic approach and Lagrange Multipliers found in a pure
optimization theory approach.

Let us consider the cost-to-go:

N-1

J(n) =Y Lix(k),u(k), k) + ¢(z(N)) ©)

n==k

with L and ¢ as defined in (3) and (4) respectively. We
remark that J(n) is a function of z(n), and u(k), k =

n,...,N —1 and introduce the sensitivity of the cost to go
with respect to the current state:
aJ(n)
A (n) = 6
™) = Fatn) ©
From
J(n) = L(z(n),u(n),n) + J(n+1), ™
and since

8J(n+1) _ 8J(n+1) Oz(n+l) _
@i(n) = 3xEn+1) : 8§c(n)) = >\T(n+ l)fx(z(n),u(n)),

we have the recursion:

A (n) = La(z(n),u(n),n) + A" (n + 1) fo(a(n), u(n))
= [z(n) = 2°(n)]"Q(n) + AT (n + 1) fa(z(n), u(n)) (8)
by using (3) and where L, and f, denote the partials of L

and f respectively with respect to the state variables. The
previous recursion can be solved backward in time (n =

N —1,...,0) given the control and state trajectories and it
can be started with the final value:
OL(N o
ATy = 220 _ ) — s (NTQUN) )

- Jz(N) [

derived from (4). In a similar manner, we compute the
sensitivity of J(n) with respect to the current control u(n).
Clearly from (7),

0J(n)
du(n)
= [u(n) = u®(n)]" R(n) + AT (n + 1) fu(z(n), u(n)). (10)

= Lu(z(n),u(n),n) + AT (n + 1) fu(z(n), u(n))

In (10), L, and f, denote the partials of L and f respec-
tively with respect to the control variables and (3) is used.
Next note that afi—gﬂ = gi—gzg since the first n terms in J
do not depend on u(n% We have then obtained the gradient
of the cost with respect to the control variables, namely:

aJ(0) aJ(1) AJ(N —1)
ou(0) Ou(l) =~ Ou(N —1)

Assuming u is unconstrained, the first order optimality
conditions require that

Vud = [ an

V.J =0. (12)

We remark that by considering the Hamiltonian
H(z,u,\,n) = L(z,u,n) + AT f(x,u), (13)
= Futn)® ie. we

we have that H,(x(n),u(n), \(n 4+ 1),n) = 2.
uncover the generally known but frequently overiooked fact
that the partial of the Hamiltonian with respect to the control
variables u is the gradient of the cost function with respect
to u. We emphasize here that in our approach for solving
the optimal control problem, we take the viewpoint of the
control variables u(n) being the independent variables of
the problem since the dynamical equations express (recur-
sively) the state variables in terms of the controls and thus
can be eliminated from the cost function. Thus in taking
the partials of J with respect to u, J is considered as a
function u(n), n =0,..., N —1 alone, assuming that z(0)
is given. With this perspective, the problem becomes one
of unconstrained minimization, and having computed V,,J,
Steepest Descent, Quasi-Newton, and other first derivative
methods can be brought to bear to solve it. However, due
to the large-scale character of the problem, only methods
that take advantage of the special structure of the problem
become viable. The Linear Quadratic Regulator algorithm
is such an approach in case of linear dynamics. We briefly
review it next.
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B. Linear Quadratic Tracking Problem

We next consider the case of linear dynamics in the
optimal control problem of (1) and (2). In the following,
we distinguish all variables corresponding to the linear
optimal control problem that may have different values in
the nonlinear optimal control problem by using an over-bar.
When the cost is quadratic as in (3) we have the well-
known Linear Quadratic Tracking problem. The control
theoretic approach to this problem is based on solving the
first order necessary optimality conditions (also sufficient in
this case) in an efficient manner by introducing the Riccati
equation. We briefly elaborate on this derivation next, for
completeness and also since most references assume that
the target sequences x°(n) and u°(n) are zero. First, we
summarize the first order necessary optimality conditions
for this problem.

Zn+1) = AMm)Z(n)+ Bn)a(n)  (14)
Mn) = [z(n) —2°(n)]"Q(n) +
+AT (n+1)A(n) (15)
8J(n)/du(n) = [a(n) —a’(n)]" R(n)
+AM(n+1)B(n) = 0 (16)

Note that the system dynamical equations (14) run forward
in time n = 0,..., N — 1 with initial conditions Z(0) =
Zo given, while the adjoint dynamical equations (15) run
backward in time, n = N — 1,...,0 with final conditions
AT(N) = [2(N) — z°(N)]TQ(N). From (16), we obtain

a(n) = a°(n) — R (n)BT (n)X\(n + 1) (17

and by substituting in (14) and (15), we obtain the classical
two-point boundary system but with additional forcing
terms due to the z°(n) and @°(n) sequences.

z(n+1) = An)z(n)— Bn)R ()BT (n)A\(n +1) +
+B(n)u’(n) (18)

M) = Qn)z(n)+AT(n)A(n+1) —
—Q(n)z°(n). 19)

The system of (18) and (19) can be solved by the sweep
method [1], based on the postulated relation

A(n) = P(n)z(n) + s(n)

where P(n) and s(n) are appropriate matrices that can be
found as follows. For n = N, (20) holds with

P(N) =Q(N), s(N)=—-Q(N)z°(N).

We now substitute (20) in (18) and after some algebra we
obtain

(20)

21

Z(n+1)=Mmn)An)z(n) +v(n) (22)

where we defined
M) = [I+BmR 'n)BT"(n)P(n+1)]  (23)
o(n) = M(n)B(m)[a°(n) - R~ (n)B" (n)s(n + 1)].
(24

By replacing A(n) and A(n + 1) in (19) in terms of Z(n)
and Z(n + 1) from (20), we obtain
P(n)z(n) +s(n) =
=Q(n)z(n) + AT(n) [P(n+1)Z(n+ 1)+
+s(n+1)] = Q(n)z°(n),
and by expressing Z(n + 1) from (22) and (24) above, we
get
P(n)z(n) +s(n) =
Q(n)z(n) + AT (n)P(n + 1)M (n) A(n)z(n) —
—AT(n)P(n+ 1)M(n)B(n)R~1(n)BT (n)s(n +
+AT (n)P(n 4+ 1)M(n)B(n)ua°(n) +
+AT(n)s(n +1) — Q(n)z°(n).

The above equation is satisfied by taking

1

Py = Qo )+AT(> (n+ DMA@m)  (25)
s(n) = n) [I = P(n+1)M(n)B(n)R™"(n)-
(n)] s(n+1) +
+AT( )JP(n+ 1)M(n)B(n)u’(n) —
—Q(n)z°(n) (26)

Equation (25) is the well-known Riccati difference equation
and together with the auxiliary equation (26), which is un-
necessary if z°(n) and u°(n) are zero, are solved backward
in time (n = N —1,...,1), with final values given by (21)
and together with (23) and (24). The resulting values P(n)
and s(n) are stored and used to solve forward in time (22)
and (17) for the optimal control and state trajectories.

III. MAIN RESULTS
A. Formulation of the SLQ Algorithm

In the proposed SLQ algorithm, the control at stage k41
is found by performing a one-dimensional search from the
control at stage k and along a search direction that is
found by solving an Linear Quadratic (LQ) optimal control
problem. Specifically, let Uy, = [u?(0) uT(1)...uT(N —
1)]T be the optimal solution candidate at step k, and
X = [2T(1) 27(2)...2T(N)]T the corresponding state
trajectory obtained by solving the dynamical equations (2)
using Uy, and with the initial conditions x(0). We next
linearize the state equations (2) about the nominal trajectory
of Uy, and Xj. The linearized equations are

fa(z(n), u(n)z(n) + fulz(n), u(n))a(n)

27)
with initial conditions Z(0) = 0. We then minimize the
cost index (1) with respect to @(n). The solution of this
LQ problem gives Uy, = [a?(0) a®(1)...a" (N — 1)]7T,
the proposed search direction. Thus, the control variables
at stage k + 1 of the algorithm are obtained from

Z(n+1) =

Ups1 = U +ay - U (28)

where o € RT is appropriate stepsize the selection of
which is discussed later in the paper. Note again our
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perspective of considering the optimal control problem as
an unconstrained finite-dimensional optimization problem
inU.

We emphasize that U as computed above is not the
steepest descent direction. It is the solution to a linear
quadratic tracking problem for a nonlinear system that has
been linearized about Uy. Note that the objective function
is not linearized for this solution. Our algorithm is different
than standard Quasilinearization [1] and Neighboring Ex-
tremal [13] methods where the adjoint equations are also
linearized and two-point boundary problems are solved.
As it was mentioned earlier, our algorithm corresponds to
the Gauss-Newton method for solving the optimal control
problem of (1) and (2).

B. Properties of the SQL Algorithm

In this section, we prove two important properties of the
proposed algorithm. First, we show that search direction U
is a descent direction.

Theorem 1: Consider the discrete-time nonlinear optimal
control problem of (1) and (2), and assume a quadratic

cost functlon as in (3) and (4) with R(n) = RT(n) > 0
Q(n QTn >0,n=0,1,...,N—1,and Q(0) =
Q(N ) = (N) > 0. Also consider a control sequence
U= [uT(O) . .uT(N - 1)’1“ and the corresponding state
trajectory X = [#7(1)...27(N)]?. Next, linearize system
(2) about U and X and solve the following linear quadratic
problem:

amie T = SIaN) — 2 (M QUNEN) + 2°(N)] +
1 = = ~0 T = ~0
+5 > {[x(n) —z°(n)]" Q(n)[Z(n) — 2°(n)]+
n=0
+ [a(n) — a° ()" R(n)[a(n) - a°(n)]} 29)
subject to
Z(n+1) = fa(z(n), u(n))Z(n) +
+ful(z(n), u(n))u(n); (30)
z(0) =0,
where Z°(n) = 2°(n) —z(n), u°(n) = u°(n) —u(n). Then

if U = [u”(0)...a7 (N —1)]7 is not zero, it is a descent
direction for the cost function (1), i.e. J(U+a-U) < J(U)
for some o > 0.

Proof: We establish that U is a descent direction by
showing that:

N—-1

=y gié:ia(n) <0, 31)

n=0

since V. J in (11) is the gradient of the cost function with
respect to the control variables. Now, the components of
V., J are expressed in (10) in terms of the adjoint variables
A(n) that satisfy recursion (8) with final values given by
(9). On the other hand, Z(n) and u(n) together with adjoint
variables \(n) satisfy the first order optimality conditions
for the linear quadratic problem given in (14), (15) and (16),

where A(n) = f,(z(n),u(n)) and B(n) = f.(z(n),u(n)).
Let us define B B
A(n) = A(n) — A(n) (32)
and note from (8) and (15) that
M) = 2"(n)Qn) + A" (n+1)A(n)
(33)
AN) = Q(N)E(N).

Next through the indicated algebra, we can establish the
following relation:

oJ(n) Ci(n) =

du(n)
= ([U(n) —u’(n)]"R(n) + A" (n + 1) B(n)) u(n)

= N+ 1D)En+1)+ A (n+1)A(n)Z(n) —
—aT(n)R(n)a(n) (using (30))
= MN'(n+1)z(n+

(using (33))

Finally, summing up the above equation from n = 0 to
n = N — 1 and noting that Z(0) = 0 and from (21) that
A(N) = Q(N)Z(N), gives:

N-1
> 2I() oy

Vol U =
=, ou(n)
N-1
= - BT m)Qm)z(n) +a” (n)R(n)a(n)] -
n=0
—zT(N)Q(N)Z(N) < 0 (34)
and the proof of the theorem is complete. ]

We remark that the search direction U can be
found by the LQ algorithm of Section IL.B with

A(n) = fe(x(n),u(n)) and B(n) = fu(z(n),u(n)).

The next result shows that the proposed SLQ algorithm
does in fact converge to a control locally minimizing the
cost function (1). We denote by J[U] the cost associated
with the control U = [u?(0)...uT(N — 1)]T (and the
given initial conditions x(0).)

Theorem 2: Starting with an arbitrary control sequence
Uy, compute recursively new controls from (28) where the
direction Uy is obtained as in Theorem 1 by solving the
LQ problem of (29) and the linearized system (30) about
the current solution candidate Uj and corresponding state
trajectory Xp; also ay, is obtained by minimizing J[Uj +
aUy] over @ > 0. Then every limit point of Uj, gives a
control that satisfies the first order optimality conditions for
the cost function (1) subject to the system equations (2).
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Proof: Let us define D, = VyJ[Ug] - U < 0, the
derivative of J[Uj, + aUy] with respect to a at o = 0. We
first show that under the exact line search assumption, Dy,
has a subsequence that converges to zero as k — oc. Notice
that for any fixed e such that 0 < € < 1 and « sufficiently
small, it holds

J[Ug + U] < J[Ui] + eaDy,. (35)

Let aj, be such that (35) is satisfied with equality (such
ay < oo exists since otherwise J[Uy + aU;] — —oo as
a — 00, contradicting the fact that J is bounded below by
zero.) From the mean value theorem, there exists 35 with
0 < Br < @y such that

J[Uk+ﬂkUk]'Uk=€Dk. (36)

Then, it holds
J[Uk] _J[Uk+1] > J[Uk] —J[Uk—l—@kUk] = earDy. (37)

Since J[Uj] is monotonically decreasing and bounded be-
low (by zero), it converges to some value and (37) implies
that @Dy, — 0. Let us assume that ||Dy|| > n > 0 for
all k. Then, it must be that a; — 0 and thus B — 0.
Now divide both sides of (36) by ||Dy|| and note that since
Dy, = Dy /||Dy| belongs in the closed unit ball of R, a
compact set, it has at least one limit point D* that satisfies
from (36), D* = eD*, or D* = 0, which a contradiction.
Therefore, we conclude that there is a subsequence of Dy,
that converges to zero.
Next, from (34), we obtain:

Dy = VuJ[Uy] - Uy < —p||Ux|* <0, (38)

where p > 0 is a uniform lower bound on the minimum
eigenvalue of R(n), n =0,...,N — 1. Then (38) implies
that there is a corresponding subsequence of U} that
converges to zero. For notational convenience, we identify
this subsequence of U (and corresponding subsequences
of other sequences) with the whole sequence. But Uy — 0
implies from (14) that X}, — 0 (note that Z(0) = 0 and that
A(n) and B(n) can be assumed to be uniformly bounded
since U1 — Uy = oy U, — 0.) Consequently, (33) implies
that A(n) — A(n) for n = 0,..., N — 1, and that the
right-hand-side of (10) converges to the right-hand-side
of (16) which is zero by the optimality of U for the
LQ problem. This shows that the first order optimality
conditions (10) for the nonlinear control problem are
asymptotically satisfied, i.e. Vi JJ[Ux] — 0 as k — oo. We
remark that the last conclusion follows for a subsequence
of Uy, but since the cost J[Uj] is monotonically decreasing
and clearly converges to a locally minimum value, any
limit point of U, must be a stationary point. ]

We remark, that the exact line search in Theorem 2 can be
replaced with an inaccurate line search that satisfies some
standard conditions such as in the Armijo, Goldstein, or
Wolfe stepsize selection rules [14], [15]. Similar arguments

as in previous proof can be used to show that Dy — 0 still
follows and the proof is completed as above.

IV. NUMERICAL EXAMPLE: A GAS ACTUATED
HOPPING MACHINE

An interesting optimal control problem is that of creating
motions for an autonomous hopping machine. A simple
model for a gas actuated one-dimensional hopping system
is shown on the left-hand side of Figure 1. This system
is driven by a pneumatic actuator, with the location of
the piston relative to the mass under no external loading
defined as y,. After contact occurs with the ground with
y < ¥yp, the upward force on the mass from actuator can be
approximated by a linear spring with F' = k(y, —y), where
k is the spring constant. The position y,, can be viewed as
the unstretched spring length and it can be easily changed
by pumping air into or out of either side of the cylinder. The
equations of motion for the mass are mij = F(y, y,) —mg,
where mg is the force due to gravity, and F(y,y,) =

0 Y > Yp
k(y, —y) otherwise.

is not differentiable at iy = y,,, and the proposed algorithm
can not be used on this problem. However, the discontinuity
in the derivative can easily be smoothed. For instance, let
the spring compression be e = y, —y and choose an o > 0,
then

Note that in this case F(y,yp,)

0 0>e
Fle)={ £e¢? 0<e<a
ke — k2 otherwise

2

is C. The final equation of motion for this system relates
the air flow into the cylinder, which is the control w(t),
to the equilibrium position y, of the piston. Assume for
the following that the equation g, = u approximates this
relationship.

When the hopping machine begins its operation, we are
interested in starting from rest, and reaching a desired hop
height y§; at time ¢;. If we minimize

T) = Sapm(y(N) — y8)? + §(N)?
ty - 2 2
*ox 2 [aw®? +rum)], 69

the terms outside the summation reflect the desire to reach
the height at time ¢ with zero velocity, and the terms inside
the summation reflect the desire to minimize the gas used
to achieve this. The weighting on y, is used to keep the
piston motion within its bounds. We conducted numerical
experiments on this system with the following parameters:
k/m = 500, g = 386.4, & = 0.1. We assumed that all states
were initially zero, and that the initial control sequence
was zero. The cost function parameters were selected as:
Y =20, ¢t =1, qfsn = ¢ = 1000, and 7 = 1.0. A simple
Euler approximation was used to discretize the equations,
with N = 100. Note that the algorithm produced an
alternating sequence of stance phases and flight phases for
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the hopping system and it naturally identified the times to
switch between these phases. If one were to use collocation
methods to solve this problem with explicit consideration
of the different dynamics in the different phases, one would
have to guess the number of switches between phases and
would need to treat the times at which the switch occurs
as variables in the optimization. In the full version of the
paper [10] (omitted here due to space limitations), we show
that the proposed SLQ algorithm can be interpreted as a
Gauss-Newton algorithm and thus explain its excellent rate
of convergence observed in simulations. Consistent with
this interpretation, our algorithm converges much faster
when the weighting on the control r is increased; also
the number of iterations required for convergence in this
problem increases for larger y%;, ranging from 3 for y§; = 1,
to 166 for y%, = 50. In addition, the algorithm failed to
converge for a < 1 x 107°, which demonstrates the need
for the dynamics to be continuously differentiable.

V. CONCLUSION

We developed an algorithm for solving nonlinear optimal
control problems with quadratic performance measures and
unconstrained controls. Each subproblem in the course of
the algorithm is a linear quadratic optimal control prob-
lem that can be efficiently solved by Riccati difference
equations. We show that each search direction generated in
the linear quadratic subproblem is a descent direction, and
that the algorithm is convergent. Computational experience
has demonstrated that the algorithm converges quickly to
the optimal solution. The SLQ algorithm is proposed as a
powerful alternative to Newton methods in situations that
second order derivative information on the system dynamics
is not available or expensive to obtain and a near real-time
solver is required.
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