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Abstract—One of the prevailing paradigms of physical 
rehabilitation following neurologic injury is to “assist-as-
needed”; that is, the rehabilitation therapist manually assists 
patients in performing movements, providing only as much
assistance as needed to complete the movement. Several
research groups are attempting to automate this principle with
robotic movement training devices. This paper derives an 
“assist as needed” robotic training algorithm by framing the 
problem as an optimization problem. We assume that motor
recovery can be modeled as a process of learning a novel 
sensory motor transformation. The optimized robotic 
movement trainer is then an error-based controller with a 
forgetting factor. It bounds kinematic errors while
systematically reducing its assistance. The same controller also
works well if the dominant dynamics of recovery are akin to a 
strengthening process. We experimentally validate the
controller with an unimpaired subject by demonstrating how
the controller can help the subject to learn a novel sensory
motor transformation (i.e. an internal model) with smaller
kinematic errors than typical. The task studied here is walking
on a treadmill in the presence of a novel dynamic environment. 
The assist-as-needed controller proposed here may be useful
for limiting error during the learning of tasks in which large 
errors are dangerous or discouraging.

I. INTRODUCTION

ROBOTIC-ASSISTED movement training following
neurologic injury is a promising new field that seeks to

automate hands-on therapy and promote neural recovery [1-
4]. Currently, however, it is unclear how robots should assist
in therapy in order to best promote neural recovery.
Experienced rehabilitation therapists advocate “active assist 
exercise” or “assisting as needed”, which refers to the 
principle of helping the patient perform a movement with
the minimal amount of manual assistance possible [5].
Several robot control algorithms have been designed to
automate active assist exercise, for both upper extremity and
gait training [6-9]. However, these algorithms are currently 
ad hoc, unsupported by either rigorous modeling of the
human motor system or by randomized, controlled, clinical
tests.  Developing these algorithms based on an 

understanding of the neural computations involved in
adaptive control could provide a theoretical foundation for 
appropriate control strategies.

In this paper, we formulate the “assist-as-needed” 
principle as an optimization problem. We assume that the 
robotic movement trainer must minimize a cost function that
is the weighted sum of robot force and patient movement
error. We then find the controller that minimizes this cost
function for the case in which motor recovery is modeled as
a process of learning a novel sensory motor transformation
(i.e. learning an “internal model” of the impairment). We
use an experimentally validated, computational model of 
internal model formation [10] that relates the perturbing
force and previous kinematic error to predict the future
value of that error. The resulting control law allows motor
learning with small kinematic error, and systematically
reduces its assistance as learning progresses. Thus, the 
controller “assists as needed”. The same controller works 
well if the dominant dynamics of motor recovery are akin to
a strengthening process. Finally, we present an initial
experimental validation of this controller as a proof of the
viability of concept.

II. ASSISTANCE-AS-NEEDED AS AN OPTIMIZATION PROBLEM

To provide a context for the following controller
derivation, assume that we are interested in designing a
robotic control law for gait training. We would like the
robotic device to assist in re-training the swing phase of gait.
We quantify motor performance by step height xi on the ith

step, and robot performance by peak upward force exerted
Ri on the ith step. We assume that the robotic movement
trainer attempts to minimize a weighted sum of error and 
assistance force:
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where xd is the desired step height and R is a constant
which weights the relative cost of the error and force terms.
Notice that minimizing this cost function requires satisfying
two competing goals: applying as little force as possible and
making the person step as close to the normative step height,
xd, as possible. Thus, this cost function formalizes the
principle of “assist-as-needed”. 
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These dynamics capture the process of internal model

formation, which has been quantified in a wide range of 
experiments examining motor adaptation to imposed novel
dynamic environments [10-12]. We have shown elsewhere
that these dynamics minimize a cost function containing
error, effort, and change in effort terms [10]. Further, they
can be viewed as arising from the interaction of spring-like
leg dynamics with the following muscle controller:

The robot controller (9) is thus similar to the human
controller (3), in that it adjusts the robot force based on the
step height error. It also uses a forgetting factor, fR, to
decrement the robot force on the next movement when error 
is small. The control law also contains a feedforward term
related to impairment force I. This term is small if the
impairment is assumed constant and the human forgetting
factor is near one. One effect of this feedforward term is to
initialize the robot force R so that it limits the initial 
kinematic error due to the impairment.

1 (i H i H iu f u g x x      (3)
where ui is force from muscular activity on the ith trial, fH < 
1 is a forgetting factor, and gH is the motor system’s
feedback gain for error-based correction of the muscle
activity. Thus, our basic assumption about how the nervous
system responds to an applied force is that it tries to model
the force then counteract it, using an error-based learning
controller. The parameters of (2) are related to the
parameters of the controller as follows:

Here we assume that the impairment is a constant, so
I=0. Combining the robot controller in (9) with the

dynamics that describe motor adaptation (6) and substituting
the RHS of (8) for Ri by shifting backward in time once
gives the dynamics for the robotic movement training
system as it interacts with the patient:
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with the following coefficients:
where K is the limb stiffness. We assume now that the force 
field applied to the leg is the sum of two perturbations: the
force applied by the assisting robot, R, and a virtual force 
created by a neurologic impairment, Ii:
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         (5)i iF R I Note that these dynamics arise from the interaction of two
adaptive processes: the robot control algorithm (9), and the
human motor adaptation (6) to the applied forces.

The virtual force Ii can be viewed as the effect of the 
neural injury expressed as a force.  For example, if the
patient has difficulty lifting the leg following injury, we
model this as the consequence of a virtual force that pushes
the leg downward, relative to the normative condition.

III. ANALYSIS OF THE SYSTEM BEHAVIOR

Substituting (5) into (2) gives the dynamics of motor
adaptation in response to the robot assistance and the
impairment:

A. Simulation

1 0 1 1 1 1i i i o i i o ix a x b R b R b I b I c (6)
Now, the minimum of the cost function (1) occurs when:
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We simulated the behavior of the system in order to verify
the operation of the controller. We first examined how the
system responded to an applied force field without robotic
assistance. For simplicity and ease of presentation, we 
assume that the impairment force I = -1 N such that the 
impairment pulls the leg downward. Furthermore, we
assume the following values for the learning gain, gH = 0.3 
N/m limb stiffness, K = 1 N/m, and forgetting factor, fH = 1. 
Other values are certainly possible and can even be
identified experimentally [13], but this set of values
conveniently illustrates the essence of the system behavior.

Rearranging (7) with the partial taken from (6) gives the
robot controller that minimizes the cost function:

0
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R
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Substituting (6) into (8) gives the error-based robot 
controller:

1 ( ) (i R i R i d R H i i 1)R f R g K x x c f I I  (9) 

For the simulations, we activated the impairment force at
step number 25. Figure 1 shows the response of (6) with the
robot force, R = 0. The impairment causes the step height to
decrease at step 25. The subject then forms an internal
model of the impairment, gradually increasing the muscle
force to counteract it, and gradually reducing the step height
error.

with the following parameters:

The modeled motor system compensates well for the
impairment, so the question arises as to why robotic
assistance would be needed. A critical assumption regarding
the type of rehabilitation situation we are considering here is 
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that impairments can induce large errors, which are often
prohibitive to subject movement. Robotic therapies offer a 
solution to bound errors and thus restore movement ability.
For example, in our current example of an impairment that
affects step height, if step height were too low, then the
patient would trip and be unable to step.
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Figure 2. Behavior of Coupled Robot and Human Adaptive System.
Impairment and Robot assistance occur at step 25. The robot bounds the 
error while still allowing learning. 
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assistance algorithm uses a forgetting factor, fR that is
less than the human forgetting factor fH.

Figure 1. Behavior of Human Adaptive System to Imposed Impairment.
Impairment occurs at step number 25 and causes a decrease in step height. This observation stems from the examination of the equation

for fR in (10), which was derived assuming an optimized
controller. Note that fR < fH for all R. Thus, the robot must
attempt to decrease its force more quickly than the human
controller in order to assist only as needed, as we found
previously in simulation [14].

We denote an arbitrarily chosen maximum tolerable error of
–0.2 with open circles (o) (FIG.1). Hypothetically, if the step
height error were to go below this line, the subject’s
movement would be prohibited and thus he could not
practice walking, and the motor system would not learn to
compensate for the impairment. Observation 2: The optimized assist-as-needed 

algorithm is stable as long as the human adaptive
controller is stable, because the algorithm bounds the
error-based learning gain gR.

Next, we add the robotic assistance (9) to the system.
We choose R = 0.01 in (1), thus placing emphasis on
maintaining a small step height error. We assume that the
robotic assistance and impairment both turn on at step 25. 
The effect of the robot controller is to bound the step height
error, which would hypothetically allow the subject to
practice moving, and thus to model the impairment force 
(FIG. 2). Notice that the time taken to learn the muscle force
required to cancel the impairment force is longer than
without assistance (cf. FIG. 1), because of the reduced
movement error. 

The stability of the robotic system as it interacts with the 
human is determined by the coefficient d0 in (12). In order 
for the interacting system to be stable |d0| < 1. The robot
controller selects gR and fR per (10). Substitution of these
formulas into the equation for d0 in (12), gives
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Thus |d0| < 1 for all R > 0 if |fH- H| < 1 and 0 < fH < 1. 
According to (2) and (4), the condition |fH- H| < 1
corresponds to the stability condition for the human adaptive 
system operating on its own. Thus, even though it is possible
to select a large error-based learning gain gR for the robot in
(9), a large gain would make the coupled system unstable
(even if the individual robot and human systems were
stable). This situation is prevented because the optimized
controller bounds the robot gain in (10) relative to the
parameters that determine the stability of the human
adaptive system.

B. Optimality Constraints of the Control Gains
At the onset, one might have guessed that an error-based 

robotic assistance algorithm with a forgetting factor would
“assist-as-needed”. In fact, we previously tested this concept
[14]. These previous simulations indicated that the ability of
the controller to assist-as-need required that the robot
forgetting factor fR be less than the human forgetting factor,
fH; i.e. the robot must “out forget” the human system.

We gain analytical insight into this condition, as well as 
another key stability condition, by framing the problem as 
an optimization problem in the present paper. We express
these insights as two observations: IV. INCLUDING A MODEL OF WEAKNESS

We have assumed so far that the patient is capable of
exerting any force required to counteract the effect of the
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impairment, and, consequently, that the primary issue in
neural recovery is one of relearning an appropriate sensory
motor transformation, i.e. an internal model of the effects of
the injury. It is likely, however, that the neurologic injury
will also affect the ability of the motor system to produce the 
forces required to implement an internal model. Weakness
is a profound and common impairment following stroke and 
spinal cord injury. We can model the effect of weakness by
including a constraint on the maximum muscle forces that
can be exerted, by controlling the output of (3):

1iS

max

,     (14)1 1min( , )i iu u
where S, which we term “strength”, is a measure of the
maximum motor command that is capable of being
implemented by the human motor controller. We further
assume that the value of this maximum motor command will 
improve with practice toward full strength (S = Smax):

,     (15)1 (1 )i iS mS m S
where m determines the time constant of overcoming the
weakness. We have assumed, for presentation simplicity,
that Smax = 1 and m = 0.98. Thus, we assume that the patient
starts out weak and gains strength over time, in a first-order
process driven by movement repetition. This assumption has
the effect of increasing the amount of time taken to model
the field (FIG. 3), as compared to (FIG. 1). Note again that
error is below the maximum tolerable error of –0.2 and thus,
hypothetically at least, the subject would be incapable of 
movement and therefore rehabilitation. This simulates the
rational for why subjects enter therapy. 
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Figure 3.  Behavior of Unassisted, Weakened Human Adaptive System.
Strength is assumed to increase slowly according to (15).  Impairment
occurs at step 25. Here, muscle force and strength overlap indicating that 
recovery is limited by strength.

V. SIMULATION OF SYSTEM BEHAVIOR WHEN WEAKNESS
DOMINATES THE RECOVERY DYNAMICS

We return now to the example of gait training to place the 
following simulation in context. Assume a person 
experiences a neurologic injury that not only alters their
sensory motor transformation for controlling leg movement,
but also greatly reduces leg strength. The reduced leg
strength prevents walking, and thus the person never 
strengthens the leg or learns the altered sensory motor

transformation. With robotic therapy, the robot can bound 
errors while assisting as needed, allowing the subject to both
strengthen the leg and model the field. Figure 4 shows the
situation where the impairment occurs at step 25 and large
errors are present, which prevent stepping practice. At step 
50, the patient enters robotic therapy with the robotic
controller described by (9). The controller bounds the step
height error. The patient gradually strengthens the leg, and,
concurrently, gradually forms an internal model of the
impairment. Thus the assist-as-needed controller also is
successful in reducing error, promoting learning, and 
strengthening when strengthening dynamics are the rate-
limiting process of rehabilitation (FIG.4). For comparison,
Figure 4 also shows the effects of a controller that assists 
with a fixed level of assistance (i.e. fR = 1). Note that while
error is small, but the motor system never learns to model
the force.
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Figure 4.  Time course of recovery to neurologic injury when
strengthening dynamics dominate recovery and the robot assists as needed.
Subject suffers impairment at step 25 and attempts to recover.  Errors are
large and prohibitive to movement. Subject enters robotic therapy with 
adaptive robot assistance (9) at iteration 50. The robot bounds errors,
allowing subject to develop strength and model the impairment.

VI. EXPERIMENTAL VALIDATION FOR A LOCOMOTOR
ADAPTATION TASK

We experimentally validated the assist-as-needed robotic
assistance algorithm for the case of an unimpaired human
subject adapting to a perturbing force field during walking
on a treadmill. Here, we propose an analogy between the
perturbing force field and a sensory motor impairment. We
show that the subject can learn an internal model of the
force field (i.e. the “impairment”) with smaller kinematic
errors when the robot “assists as needed.” 

A. Experimental Setup
A single healthy male subject completed two experiments

during which a 2-DOF planar robot (described in [13])
applied an upwardly directed, viscous force field to the
subject’s lower shank during walking on a treadmill. The
viscous force was proportional to the subject’s forward 
velocity during the swing phase of gait (gain = 44 Ns/m).
The effect of this force field was to push the leg higher than
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normal during swing. Our purpose was to compare how the
subject adapted to the force field with and without robotic
assistance. The position of the lower shank was collected at 
200Hz. In a first ‘baseline’ experiment we collected data
that allowed us to identify the parameters of the learning
model (4), and from these parameters, the robot assistance
parameters from (10). This baseline experiment consisted of
500 steps in five stages. In the first stage, the robot applied
no force (null field) for 50 steps. This was followed by 200
steps in the null field during which the robot applied 30 
randomly spaced “catch trials” for which the force was 
turned on for a single step with a random gain between 17 
and 71 Ns/m. During the third stage, the robot applied a 
constant gain viscous force field, gain = 44 Ns/m for 50
steps. During the fourth stage of 100 steps with the previous
gain, the robot applied 15 randomly spaced “catch trials”
with a random gain between 17 and 71 Ns/m. The fifth stage
concluded with 50 steps in the null field. During the second
experiment, the subject adapted to the force field with and 
without robotic assistance. The subject stepped in a series of 
three stages. The first and third stage were standard tests of
adaptation: 50 steps in the null field, followed by 50 steps in
the force field, followed by 50 steps in the null field again. 
During the second stage, the subject stepped in the
perturbing field for 200 steps, with a second robot force
superimposed on the perturbing force field. Specifically, the
robot provided a superimposed, assisting force field using
the “assist-as-needed” robot control in (9). The robot control
law determined the gain of this force field, which was of the
same form (i.e. vertical viscous force) as the perturbing
force. Following the initial 100 steps, ten randomly spaced 
“catch trials” were used to test for the presence of 
aftereffects and thus internal model formation.

B. Experimental Results
Subject specific parameters were obtained through

multiple linear regression on data from the baseline
experiment. The R2 value for the subject was 0.68. Figure 5 
shows the results of the second experiment with the
weighting coefficient R chosen to be 0.01. When the force 
field was applied in the first and third blocks (trials 50 and
400), the subject exhibited a large step height error, but then
reduced the error with practice over the next ten to twenty
steps. When the field was unexpectedly removed (step 100 
and 450), the subject exhibited an aftereffect of adaptation,
stepping lower than normal, indicating that he had formed
an internal model of the force field. When robot assistance
was provided according to the “assist-as-needed” control 
law (9) in the second block, the direct effect (step 150) was 
significantly smaller than without assistance (p<0.03), ttest
comparing direct effect with robot assistance to two direct
effects without robot assistance). However, the subject still 
exhibited comparable aftereffects when the force field was 
removed during catch trials (interspersed in steps 250 to
350).

Theoretical predictions for the evolution of robot
assistance and step height error are confirmed by the 
experimental data as predicted by theory (FIG. 6). A key 

feature of the evolution of the robot assistance is that it
slowly decreased as the subject learned the force field. Thus,
the robot at first assisted the subject more in order to reduce
step height error, but then gradually reduced its assistance as 
the subject learned to compensate for the force field on his 
own.
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VII. DISCUSSION

By framing the assist-as-needed therapeutic goal as an
optimization problem, we derived a robotic training
algorithm that can bound errors while still allowing learning. 
The controller takes the form of an error-based learning 
controller with a forgetting factor, similar to the human
motor controller itself. Such a controller works for the case 
in which the primary dynamics of recovery are that of
learning a novel sensory motor transformation, or that of
strengthening. The controller can be distinguished from
previous robot therapy controllers that provide a fixed
amount of assistance with impedance, force, or position 
controllers because it includes a “forgetting” process that 
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reduces the applied force from movement to movement as a 
function of measured error.  

We experimentally validated the assist-as-needed 
controller for the case of an unimpaired subject adapting to a 
perturbing force field during walking on a treadmill. The 
direct effect and subsequent kinematic errors were kept 
smaller with robot assistance, but the subject still learned an 
internal model of the force field as evidenced by the 
presence of comparable after effects following adaptation. 
To achieve learning with reduced error, the assist-as-needed 
controller gradually reduced the level of assistance it 
provided; this reduction was well predicted by the theory 
(Figure 6). 

There are two key issues in the practical implementation 
of this technique for rehabilitation therapy. First, the 
controller requires knowledge of fH, gH, K, I, xd and S. It is 
possible to identify fH, gH, K, and xd for unimpaired subjects 
by measuring adaptation to a force field [13], but it is 
unlikely that such identification techniques would work for 
impaired subjects if their impairment limits their ability to 
perform the task. One possible solution is to use parameters 
identified for unimpaired subjects. More generally, the 
control law will still work even if the gains are not precisely 
chosen. Varying the gains has the effect of altering the 
weighting between force and error, i.e. R. Thus, appropriate 
gains might be found by trial-and-error. The two 
observations presented here will guide the trial-and-error 
process: the robot must “out-forget” the human, and the 
robot error-based learning gain must not be too large.  

The second issue is to translate the controller into one that 
controls a set of trajectory and force parameters, rather than 
just one parameter in one direction. We currently control for 
only one parameter of performance, in this case, step height.  
Control of the entire stepping trajectory might be 
accomplished with a feedback controller that intelligently 
alters the feedback gain in a forgetting fashion similar to (9). 
Alternatively it should be possible to expand this controller 
for a series of positions along a stepping trajectory, although 
K, gH, fH, S and R might have to specified for each position 
along the trajectory.  

VIII. CONCLUSION

These results provide a theoretical basis and an initial 
experimental validation for a class of robot movement 
training algorithms that reduce kinematic error, but still 
permit learning to occur, in a sort of “smart training wheels” 
effect.  Controllers such as these may be important for 
allowing motor training after neurologic injury by bounding 
errors to movement trajectories while simultaneously 
reducing assistive forces when errors are small, thereby 
allowing learning to occur. A similar approach might be 
useful for precision motor skill training, such as during fine 
surgery or athletic training, to bound trajectory errors of 
novices while still allowing learning.
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