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Recent improvements in geometric modelling systems hove 
led to the need for more reliable end highly automated soft- 
wore for machine tool path generation. Current machining 
algorithms require that any port geometric information 
which cannot be determined from the modelling system be 
supplied by the user. Much geometric information Is needed 
i f  the model used to represent the pert is incomplete. This 
Is the case with many conventional boundary representation 
systems. However, this information can easily be determined 
automatically I f  a solid modelling system is used. This paper 
presents o method for generating numerically-controlled 
milling machine tool paths directly from constructive solid 
geometry part representations. The algorithm requires less 
user interaction than APT boundary representation 
methods. A wide variety o f  ports may be machined using 
standard torus (bull) ended milling cutters. The algorithm is 
computetlonally efficient, end requires iteration only on 
portions of  the part where gouging may occur. 
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The use of computer-based systems for modelling the 
geometry of solid objects is becoming increasingly more 
prominent in various manufacturing applications. The 
geometric modelling systems used for these applications are 
becoming more reliable, and are able to automatically 
perform many operations that required human interaction 
in the past. One operation which requires considerable 
interaction is the generation of numerically controlled (NC) 
machine tool paths. In this paper, we discuss the widely 
used APT 1'2 (automatically programmed tools) algorithm for 
the generation of NC tool paths, and we present an alternative 
method that requires less user interaction to obtain the tool 
path provided that a good geometric modelling system for 
the part description is available. 

The most common types of geometric modelling systems 
used for machine tool path generation are boundary 
representation systems. Most machining algorithms which 
use boundary representation systems, including APT, do 
not require the system to possess all the information 
necessary to represent the true solid model, ie, to contain 
all the necessary face, edge, and vertex data relationships 
needed to represent the solid 3. This is because the machining 
algorithms require the user to supply any information that 
cannot be obtained from the part geometric representation. 
Hence, most of the burden is placed on the user instead of 
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on the modelling system. APT part programming has 
become a skilful trade in itself. The part programmer must 
be well trained in using the APT language, and must know 
the various techniques to use when the algorithm does not 
converge (as is frequently the case for irregularly curved 
surfaces). 

Boundary-representation based systems that have 
machine tool path generation capabilities usually allow for 
the description of general curved object surfaces. These 
surfaces consist of arrays of parametric patches 4 which are 
specified by a finite number of points. General parametric 
surfaces are used extensively to model objects to be 
machined that have irregularly contoured surfaces (eg many 
injection-moulded objects). The main disadvantage of using 
parametric surfaces in a modelling system is that it is 
difficult to represent accurately a surface with non- 
rectangular parametric boundaries, and it is difficult to 
represent arbitrary holes through a surface. The accurate 
representation Of these boundaries requires that a large 
amount of data be stored with the surface in order to 
approximate the curves. 

The machine tool path generation algorithm presented 
here can be used with any modelling system capable of 
representing the true solid object. We used the University of 
Rochester's PADL-2 s constructive solid geometry (CSG) 
system since much of the software required for our 
algorithm is available with PADL-2, and McAuto has the 
interactive Unisolids/PADL-26 system. With Unisolids, an 
accurate description of the part can be created interactively 
very quickly, provided that the part can be represented 
with the limited number of solid primitives available for the 
construction. 

Current CSG based systems including PADL-2 do not 
have a primitive which can be used to represent a general 
surface. This limits the number of realistically shaped 
objects that the system can represent. However, a wide 
variety of typical objects to be machined can be constructed 
using the few primitives (block, sphere, cone, and wedge) 
of PADL-2. The algorithm presented here can generate 
machine tool paths for these objects more automatically 
than APT because it exploits the complete solid representa- 
tion available with the PADL-2 CSG system. No attempt 
was made to retain any of the APT commands or language 
(unlike Chan 7) with this system, since many of these 
commands become unnecessary. 

Several researchers have addressed the general problem 
of machine tool path generation and verification using 
constructive solid geometry or similar representation 
schemes. Hunt and Voelcker 8,9 have studied extensively the 
problem of NC machine tool path verification. Their work 
provides a general scheme for uncovering various problems 
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which may arise from an incomplete or inaccurate NC tool 
path. In their method, first the individual commands are 
examined to determine whether the tool will gouge the part 
or clamps, and then the actual finished part is compared to 
the desired finished part to determine the amount of 
material remaining and the undercut regions. Arbab ]° has 
proposed a similar technique using his 'Deforming Solid 
Geometry' and 'Realizable Shape Calculus' solid modelling 
methods. Armstrong 11 has developed a method for tool 
path generation and process planning for parts with planar 
surfaces of different heights. This is a somewhat limited 
class of parts, but the ability to combine tool path genera- 
tion and process planning is highly desirable. 

The tool paths considered in the studies mentioned 
above were only those which would give cutter swept 
volumes that could be represented using PADL-2 primitives. 
This is a strict limitation since these primitives are not 
general enough to represent five axis rotations as well as 
non-planar three axis translations of bull (torus) ended 
cutting tools. The main reason for requiring a PADL-2 
representation of the cutter swept volumes was to ensure 
that an exact representation of the final part produced by 
the NC tool path could be computed and compared to the 
desired final part. The ability to compare the actual final 
part machined to the desired final part is important, but it 
is not a necessary requirement for producing tool paths. 

For the work presented here we take a different point of 
view than was used in the studies mentioned previously. 
Given a description of the final part to be machined and the 
cutting tool parameters, we find a tool path which will yield a 
part which is close to the desired one, regardless of whether 
it is possible to verify the path using PADL-2 primitives. In 
the near future we may have the ability to verify tool paths 
to within normal machining tolerances using a secondary 
octree spacial enumeration representation 12'13 and high 
performance hardware. For simplicity, the method presented 
here is for 3-axis machining. However, it may easily be 
extended to 5-axis machining, and the required modifica- 
tions to the algorithm will be noted at the appropriate 
instances. 

The algorithm presented in this paper is for one con- 
tinuous motion (pass) of a tool across a part. To machine 
an entire part, multiple passes or applications of this 
algorithm must be used. The algorithm generates 
parametric curves on the surface to be machined which 
represent tool contact points. Roughly speaking, these 
curves are obtained by intersecting the part surfaces with an 
infinite plane, and determining the portions of the inter- 
section curves that lie on the object. The parametric curves 
are then shortened to produce non-gouging tool contact 
intervals. 

The key to obtaining each pass is the tool contact curve- 
trimming algorithm which produces non-gouging tool 
positions along any curve on the surface of a part. The 
trimming algorithm uses an iterative APT-like procedure 
which positions the tool on the contact curve at the inter- 
section of the surface to be machined and the surface to be 
avoided. The position found corresponds to a parameter 
value on the tool contact curve which gives the last good 
(non-gouging) tool position along that curve. 

SURFACE DEFINIT ION 
The first problem that we must address is that of determin- 
ing which regions on the part are to be cut and which 
regions on the part must be avoided. In APT, this problem 

Drive surface = plane of page 
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Figure 1. A n example showing APT surface definitions 

is handled by the part programmer for each continuous tool 
motion (pass) as shown in the following example. 

In Figure 1 let surface A be the surface robe machined 
(part surface), surface B be the left side of~he par~, and 
surface C represent a boundary of the part which must not 
be gouged (checksurface). In addition to the part surface A, 
a second surface on which the tool motion takes place must 
also be specified. This is called the drive surface. In this case 
let the drive surface D be the plane of the page. After 
defining these surfaces using the APT programming 
language, the part programmer instructs the APT module to 
position the tool at the intersections of surfaces B and D, 
and tangent to the part surface A. The APT module is then 
ready to generate the cutter location file (CL file) by starting 
from the current tool position and remaining on the drive 
surface D tangent to the part surface A until the check 
surface C is reached. The next tool motion can be generated 
after new drive, part, and check surfaces have been specified. 

In order to generate a tool path, we must have some 
method for interactively selecting the surfaces to be 
processed. With the PADL-2 CSG system, each surface is 
actually a halfspace boundary of a solid primitive, and we 
know only the location of the infinite surface. We may 
evaluate the bounding edges of the surface by traversing the 
CSG tree 14. One method of selecting a surface is to cast a 
ray along a user-defined vector or along the view direction 
from the screen cursor location. The surface selected would 
be the first one the ray pierces. A second more automatic 
method is to machine any surface on the 'top' of the part; 
the top being defined as any surface whose normal has an 
upward component. This method will lead to problems if 
there is a surface with an upward normal that the machine 
tool cannot reach. For instance, the surface may lie beneath 
an overhanging portion of the part. The method we imple- 
mented was to have the user select a surface by choosing 
any two of its edges. This made it easy to choose all the 
surfaces to be machined and all the surfaces to be avoided 
with the same interactive routine. Automatic part surface 
selection and path planning techniques were not considered 
in this study. However, this method provides a strong basis 
for such investigation, and could be used with systems such 
as that of Choiet  al is. 

In our version of PADL-2, all the surfaces of a part 
which intersect to give an edge have their pointers stored 
with the boundary file data for that edge. Once the user has 
selected at least two edges of all the surfaces to be 
machined, the pointers to the surfaces that give rise to each 
edge are retrieved. These pointers are then processed in a 
routine that saves all non-unique numbers from a list of 
numbers in order to determine the appropriate surfaces to 
be machined. 
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CUTTER MOTION GENERATION 
Once the surfaces to be machined and the surfaces to be 
avoided have been determined, we are ready to generate 
cutter motions. There are two different approaches that are 
commonly used to generate tool paths with the parametric 
surfaces found in boundary representation systems. These 
are the APT approach and the surface parameter tool 
contact curve approach. Both of these approaches produces 
a cutter location file, which is a list of cutting tool endpoint 
positions and tool axes that will be input to a numerically 
controlled machine tool. The NC machine will then move 
the cutting tool to each one of the CL points in the sequence 
that they are input. The motion of the cutting tool in 
between the CL points is usually given by linear inter- 
polation. However, if the input points form a circular arc, 
then a circular motion in between these points is sometimes 
used. Note that this methodof motion may produce some 
error in the actual part machined, but theCL points can be 
spaced together as closely as is neededfor any required 
accuracy. 

Before discussing machining algorithms, we will demon- 
strate the difference between the tool contact point and the 
actual point that is output to the CL file. For the case of 
three-axis machining as in Figure 1, the tool axis vector 
remains constant throughout the motion, and the three 
coordinates of the tool end point are specified as a sequence 
of points to be connected by s.traight line moves of the 
cutting tool. For a given contact point and tool axis, there 
is only one tool end point position which causes the tool to 
be tangent to the part surface at the contact point, and it is 
this endpoint location that is output to the CL file. The 
method used to compute the endpoint for a known contact 
point and tool axis is given in the Appendix. The tool 
position in the centre of Figure 1 shows the difference 
between the CL point and the contact point. Notice that 
for the tool position on the right side, the CL point and 
contact point are virtually identical. For five-axis machining, 
the tool axis is usually kept normal to the part surface, so 

] /Curve of contact 
o, .  I i i f  o . . . , .= fo= surfa~ i ~ ~ i  

I 
I 

Port I ~  ~ surface~ ~ Contact 

I 
Figure 2. Top and front views of  a tool p a s s  on a wedge 

the tool endpoint will coincide with the contact point 
throughout the motion. 

As another example, consider the simple case of 
generating one pass along the surface of the wedge shown in 
Figure 2. In APT, the part programmer specifies the drive 
surface and part surface as shown, and generates the tool 
motion such that the tool axis lies on the drive surface, and 
the tool end is tangent to the part surface. To generate the 
tool motion, the APT algorithm begins with the tool raised 
off the part surface, and iteratively searches for the location 
of the tool end point that causes the tool to be tangent to 
the part surface. For a planar part surface as in this case, 
only one iteration is required. For a curved part surface, 
several iterations are needed, depending on the surface 
curvature. The heart of the iteration is a routine that 
computes the minimum distance between the tool and part 
surface. After the point of tangency is found, the corres- 
ponding tool endpoint is output to the CL file, and the tool 
is moved a small step along the drive surface in a direction 
that is tangent to the part surface. The minimum distance 
iteration for the tool endpoint location is then repeated. 
The points of tangency on the part surface that are con- 
verged upon for each step of thetool's motion form a locus 
of tool contact point~ These points lie in a straight line for 
the case of a wedge as is shown in Figure 2. 

This example demonstrates that the APT algorithm will 
cause the tool to cut a portion of the surface that may not 
have been expected, since the user-specified drive surface is 
not close to the contact points for this case. This is a 
problem, as the user usually knows the area on the part 
surface that should be cut and not where the input drive 
surface should be located. 

For general curved surfaces and tool paths, the APT tool 
positioning algorithm requires iterative computation of the 
minimum distance between the tool and both the drive and 
part surfaces at every output point of the motion. Each 
minimum distance computation is also iterative, so the 
entire procedure is often computationally time-consuming 
for curved parametric surfaces. Also there is no guarantee 
that the iterations will converge for irregularly curved 
sculptured surfaces. Apart from these disadvantages, the 
two strongest points of the APT approach are: 

• The tool motion may be in any direction specified 
regardless of the surface parameterization; the motion is 
defined entirely by the drive and part surfaces. 

• The algorithm ensures that the tool will not gouge any 
specified surface because the endpoint is found by using 
a minimum-distance computation. 

An equivalent tool motion to that shown in Figure 2 could 
have been produced directly by specifying the trajectory of 
the tool contact points obtained from the APT algorithm in 
the form of a parameter curve on the part surface. Given 
any point on the parametric curve and its corresponding 
surface normal, we can position the cutting tool tangent to 
the surface at that point by using the method in the 
Appendix. As shown in the Appendix, the point of tangency 
and the tool axis vector uniquely determine the location of 
the tool endpoint. The APT method produced the same 
points of tangency on the part surface for any position on 
the drive surface. Hence, the cutter location files produced 
by both methods give the same contact points and represent 
identical tool paths. The obvious advantage of using 
parametric tool contact curves is that no iterations are 
required to generate the CL file. Only a simple algorithm 
for stepping the tool along the contact curve is required. 
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Figure 3. Machining along constant parameter curves 

Typically, parameter curve machining algorithms 
produce tool motions in either constant u or v surface 
parameter directions (surface coordinates = S (u,v) where 
S eR 3 ). There are two main problems with this approach; 
the first is due to the surface parameterization, and the 
second is due to the method of tool placement as described 
in the Appendix. The first problem is demonstrated in the 
ruled surface of Figure 3. It is diff icult to machine this 
surface along the constant u or v directions since the actual 
stepover distance is much greater on the top than it is on 
the bottom, even though the parameter increment on the 
top is the same as it is on the bottom. 

The second problem is that the method for placing the 
tool given in the Appendix sometimes causes the tool to 
gouge the part surface. The gouging occurs either on the 
part surface being machined as in Figure 4(a), or at the 
transition from one surface to another as in Figure 4(b). 
The problem in Figure 4(a) occurs when the radius of the 
cutting tool is large compared to the curvature of the 
surface being machined. The part programmer may correct 
it by selecting a smaller cutting tool, or it can be corrected 
approximately with a routine which searches the curve for 
points which cause the tool to gouge, such as point C in 
Figure 4(a), and eliminates these bad points from the tool 
path (as in the path from point A to point B in Figure 4(a)). 

The problem shown in Figure 4(b) occurs when multiple 
surfaces are to be machined consecutively in one pass. The 
tool position at the end of parametric curve 1 causes the 
tool to gouge the surface containing curve 2 and vice versa. 
This problem can be avoided by decreasing the parameter 
limit of curve 1 to end at point A, and changing the starting 
parameter limit of curve 2 to begin at point B. This would 
eliminate gouging of either one of the part surfaces, but 
would not remove the material beneath the tool near the 
intersection of the surfaces. This implies that the part that 
would be produced by this tool path is not identical to the 
part desired. However it is as close as can be obtained 
without gouging the part surfaces. The part programmer 
can obtain a more accurate tool path for this example by 
selecting a smaller cutting tool. 

The method used for finding the surface parameter 
curve limitsA and B in Figure 4(b) is presented in the next 
section of this paper, and is a key requirement for our tool 
path generation algorithm. With APT, the problem of 
gouging for this part would not have occurred as the part 
programmer would have generated the two portions of the 
tool path separately. The surface containing curve 2 would 

be specified as a check surface for the first part of the tool's 
motion, and the surface containing curve 1 would be 
specified as a start-up surface for the second part of the 
tools motion. This technique requires much more user 
interaction than that of the surface parameter curve approach. 
Note that the APT method also would not produce a part 
identical to the part desired. 

METHOD OF PATH GENERATION 
IMPLEMENTED 
The approach that we used to generate tool paths on 
PADL-2 parts was to use parametric tool contact curves to 
define the tool paths as discussed above, instead of using 
the APT method. The method presented here can generate 
passes which traverse a complex array of surfaces with no 
constraints on the direction of cut. To generate one pass of 
the cutting tool across an array of surfaces as shown in 
Figure 5, the user defines an infinite plane which will 
intersect the part surfaces that he has chosen to be 
machined. To generate a tool path which will cover the 
entire part, a family of planes parallel to the initial one 
must be specified. Let us emphasize that the surfaces 
selected to be machined are CSG solid primitive faces which 
are represented as infinite surfaces (halfspaces) internally. 

The algorithm first generates the infinite intersection 
curves that the plane makes with the part surfaces using 
standard routines available in PADL-2. Next, each inter- 
section curve is classified against the object to determine 
the portions of the curve which lie on the object (point 
classification is a process used in PADL-2 to determine if 
points lie inside, outside, or on an object). Each curve 
segment is then stored as a simple geometric entity using 
the method described in Check et a/16,17. 

Once the pointers to each analytic curve segment have 
been stored, they must be ordered in the same sequence 
that they will be traversed by the cutting tool. This is done 
by having the user select the starting point, and by comput- 
ing which curve has an end point closest to the starting 

a 

I I 
I I 

p~t 
C 

I I 
I I 

Tool position at t h e - -  Toot position at the 
start of curve 2 end of curve I 

b 
Figures 4(a) and (b). Two types o f  gouging that can occur 
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1 

Figure 5. Two sample tool passes over e Unisolids pert 

point. The starting point is then reset to be the opposite 
end of this curve, and the closeest end of the remaining 
curves to this point is then found. This process is repeated 
until all the curves have been ordered. 

In addition to ordering the curves, a flag must be set for 
each curve to denote the positive direction of cut relative 
to the curve's parameterization. This is easily accomplished 
by comparing the desired tool motion to the increasing 
parameter direction. Also, an outward normal direction flag 
is needed for each surface containing a contact curve and 
for each check surface. Every PADL-2 surface has an out- 
ward normal direction associated with it that is not 
necessarily the direction that points to the outside of the 
solid. To determine if the outward normal of a surface is 
the outward normal of the solid, a point must be offset 
from the surface in the direction of its normal. This point is 
then classified against the solid object to determine if it lies 
inside or outside of the solid. Note that this would not be 
possible without a true solid representation. 

TRANSITIONS BETWEEN CONTACT CURVES 
In order to machine along analytic tool contact curves, we 
must develop a method that eliminates gouging at the tran- 
sitions between surfaces as in Figure 4(b), and at the check 
surfaces. To do this we need to find the last parameter 
value on the curve that gives a tool position that does not 
gouge the check surface. The approach we used is similar to 
that of the APT A RLEM III 2 processor. It requires that the 
derivative of the contact curve with respect to the parameter 
can be computed at any point on the curve, and that the 
minimum (perpendicular) distance between the cutting tool 
and the check surface can be computed for any position 
and orientation of the cutting tool. 

The algorithm is described, with reference to Figure 6 

and 

(a) 

using the notation defined in the Appendix, as follows: 

At some point t on the contact curve, evaluate ~he 
derivative of the curve with respect to the parameter 
at t. 

(b) At this point, position the tool as in the Appendix. 
(c) From this tool position, compute the minimum distance 

to the check surface, along with the corresponding 
point on the tool Pt, the point on the surface Ps, and 
the unit surface 5hi. 

(d) Check if II Pt - Ps II < 6, for some small a > 0. If it is, 
then the iteration is complete. 

(e) Compute the parameter increment At  such that the 
distance that the tool moves in the direction normal to 
the planar approximation of the surface at Ps is equal 
to the perpendicular distance between the tool and the 
check surface. This parameter increment is given by: 

< ds/dt At, 5nl  > = < Pt - t°s, 5nl  > (1) 

or 

A t  = < Pt - Ps, 5nl  > / < ds/dt, 5nl  > (2) 

These five steps are repeated until the convergence criterion 
in step d is satisfied. 

As with APT, it is difficult to prove that this algorithm 
will converge for the most general combination of contact 
curve and check surface. However for a straight line and 
planar check surface, one iteration gives the exact solution. 
Thus we can expect that the algorithm will converge when 
there is a smooth curve and smooth check surface, and 
when the iteration is started with a good initial guess for 
the parameter. We have tested this algorithm with many 
combinations of curves and surfaces, and in most cases the 
algorithm converged in less than five iterations. Cases were 
encountered that did not converge only when the 
intersecting surfaces were very curved in comparison with 
the tool dimensions. In these cases, use of a smaller cutting 
tool easily corrected the problem. 

As stated earlier, the algorithm requires both the 
derivative of the contact curve with respect to the parameter, 
and the minimum distance from the tool to the check 
surface. Since each contact curve has an analytic descrip- 
tion, the derivatives are readily available. The minimum 
distance computation, however, requires more effort. The 
calculations depend strongly on the fact that the normal to 
the tool at its minimum point Pt aligns with the normal to 
the surface at its minimum point Ps. This can be shown by 
first noting that the minimum distance vector from a point 
in space to a surface is normal to the surface at the 
minimum. Then we can use this fact twice to show that the 

d$1dtAt~ 
Figure 6. Curve tr im algorithm 
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( V 3 , V l )  

Corner rodius = r 
Cylinder rodius = 6' 

Figure 7. Minimum distance between a cyfinder and a tool 

minimum distance vector between two surfaces is normal to 
both surfaces. 

For a plane and a sphere, the minimum distance can be 
computed without iteration. For other surfaces in PADL-2 
we found it necessary to use a simple first order Newton 
iteration on one variable. There are several special cases 
which must be considered, but the following is a representa- 
tive procedure for computing the minimum distance 
between a cylinder and the cutting tool. 

It is assumed that we know the location of the tool end 
P1, the tool axis unit vector V1, the tool diameter D, the 
tool corner radius r, a point on the cylinder P2, the cylinder 
axis unit vector V2, and the cylinder radius R as shown in 
Figure 7. LetP3 be a point on the cylinder axis given by 
P3 = P2 + xV2 where x is a scalar. For any value of x, we 
can construct a vector V4 normal to the tool which passes 
through P3 by the following vector computations (see 
Figure 7): 

P3 = P2 + xV2 (3) 

V3 = P3 - Pl (4) 

V5 = V3 - < V3, V l  > V l  (orthogonalization) (5) 

U = < V5,V5 >-1/2 V5 (a unit vector perpendicular 
to the tool axis) (6) 

P4 = Pl + (a/2 - r) U + rV l  (7) 

V4 = P3 - P4 ( 8 )  

What remains to be found is a value f o r x  that gives the 
vector V4 which is also perpendicular to the cylinder axis 
V2. If this is found, we have our minimum distance points 
on the tool and cylinder simply by placing them the 
appropriate distance along the vector V4. To find x, we use 
a first order Newton's method as follows. For any x, 
compute V4 as in equations (3) to (8) and let: 

< v4, v2 > = e(x) (9) 

We want e(x) = 0, so for the next iteration, solve equation 
(10) for the value of A x  that gives the best linear approxi- 
mation of this condition. 

de 
e(x) =e(xo) + - -  Ax  = 0  

dx 

de 
~ x  = -e(xo)/ 

~x 

(lO) 

(11) 

All that remains is to solve forde/dx, which is done as 
follows: 

de dV4 
- < V 2 >  

dx dx ' 

dV4 d 

dx dx 
(P2 +xV2 - ((D/2 - r )  U + r V l  +P1)) 

dV4 = V2 - (D /2  - r) --dU 
dx dx 

(12) 

(13) 

(14) 

Substituting equation (14) back into equation (12) gives: 

dU 
dxde _ 1 - ( D / 2 - r )  < -~x ' V 2 >  (15) 

So we need dU/dx, which is given by 

dU < V5, V5 >_l/2 dV5 d >-1/2) 
- - -  + - -  (< VS, V5 V5 

dx dx dx 
(16) 

where 

dV5 d 

dx dx 

d V 5  d 

dx dx 

dV5 

dx 

(V3 - < V3, V l  > VI )  

(,°2 + x V 2  - PI - < P 2  +xV2  - PI, 

V l  > V l )  

- V 2 - < V 2 ,  V I > V l  

(17) 

(t8) 

(19) 

and 

d 
~XX (< V5, V5 >-1/2) = _ < V5, V5 >-3/2 

d V 5  
< c/x.,V5> (2o) 

This iteration on the value o f x  is repeated by evaluating 
equations (11) to (20) until e(x) = 0. When we have found 
the correct value for x, the vector V4 will be perpendicular 
to both the cutting tool and the cylinder. The minimum 
distance points Pt and Ps required by the curve trimming 
algorithm lie along V4. 

As stated earlier, there are several special cases which 
must be considered when performing the minimum distance 
computation. The most common case (which was just 
presented) is when the minimum distance is between the 
toroidal part of the tool and the cylinder. However, the 
minimum distance vector may intersect the bottom fiat 
portion of the tool, or it may intersect the side cylindrical 
portion of the tool. The presence of either of these 
situations can be ascertained by some initial computations 
regarding the angle between V1 and V2, and the location of 
the tool end P1 relative to the cylinder. 

SUMMARY OF THE METHOD 
All the steps that are needed to compute tool paths have 
now been defined. After the part surfaces and check 
surfaces have been selected as in the second section, we 
compute tool motions as follows: 
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• slice the part surfaces with a planar surface and classify 
the intersection curves with respect to the object to find 
those portions of the curve which lie on the object 

• order the curves, set positive cut direction flags and set 
outward surface normal flags 

• trim the ordered curves against all part surfaces and all 
check surfaces to obtain nongouging contact curves 

• output the cutter location data using a suitable stepping 
algorithm and the tool positioning procedure in the 
Appendix 

This procedure will produce one pass of the cutting tool 
across the part surfaces. To machine the entire part, multiple 
applications of this algorithm must be performed. For each 
pass, a new planar surface must be offset by an appropriate 
lateral step-over distance from the one previously defined. 

CONCLUSIONS 

The research presented here has exploited the complete 
solid representation available with constructive solid 
geometry to develop a tool path generation algorithm that 
requires less user interaction than APT. The APT method 
requires the user to supply information that can easily be 
determined automatically if the true solid model of the part 
being machined is available. In addition to being more 
automatic, the algorithm presented here is computationally 
efficient because the minimum distance routine, which is at 
the lowest level for this algorithm and for APT, is only 
invoked on portions of the part where gouging may occur. 

To generate tool paths, parametric surface curves 
produced from standard PADL-2 surface intersection 
routines are used to create a locus of candidate tool contact 
points. These parametric tool contact curves are then 
shortened using a minimum distance routine to produce 
non-gouging tool motions. The method presented here has 
been successfully used for a wide variety of objects and 
complex arrays of surfaces. 

APPENDIX 
The following procedure is used to find the location of the 
tool end point which will cause the tool to be tangent to a 
surface, given the unit tool axis vector, the surface point, 
and the unit surface normal vector. As is shown in Figure 8, 
let Tend be the tool end point, Tax be the tool axis vector, 
Spt be the surface point, and Snl be the surface normal. 

Using the following notation: 

<a, b > = a l b l  +a262 +a363 (dot product) (21) 

II a II = < a, a >1/2 (Euclidean norm) (22) 

"Fox 
t "sn l  

Figure 8. Tool location technique 

Construct a vector perpendicular to the tool axis in the 
plane containing Tax, Tend and Snl. 

V = Snl - < Snl, Tax > Tax (23) 

If II V II = O, then the tool end Tend is equal to the surface 
point Spt. Otherwise, unitize this vector and compute the 
tool end point Tend. 

U = V/II V II (24) 

Tend = Spt + rSnl + (d/2 - r) U - rTax (25) 
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