
NC machine tool path
generation from CSG part
representations
James E Bobrow

Recent improvements in geometric modelling systems hove
led to the need for more reliable end highly automated soft-
wore for machine tool path generation. Current machining
algorithms require that any port geometric information
which cannot be determined from the modelling system be
supplied by the user. Much geometric information Is needed
i f the model used to represent the pert is incomplete. This
Is the case with many conventional boundary representation
systems. However, this information can easily be determined
automatically I f a solid modelling system is used. This paper
presents o method for generating numerically-controlled
milling machine tool paths directly from constructive solid
geometry part representations. The algorithm requires less
user interaction than APT boundary representation
methods. A wide variety o f ports may be machined using
standard torus (bull) ended milling cutters. The algorithm is
computetlonally efficient, end requires iteration only on
portions of the part where gouging may occur.

geometric modelling, algorithms, NC machine tool path generation

The use of computer-based systems for modelling the
geometry of solid objects is becoming increasingly more
prominent in various manufacturing applications. The
geometric modelling systems used for these applications are
becoming more reliable, and are able to automatically
perform many operations that required human interaction
in the past. One operation which requires considerable
interaction is the generation of numerically controlled (NC)
machine tool paths. In this paper, we discuss the widely
used APT 1'2 (automatically programmed tools) algorithm for
the generation of NC tool paths, and we present an alternative
method that requires less user interaction to obtain the tool
path provided that a good geometric modelling system for
the part description is available.

The most common types of geometric modelling systems
used for machine tool path generation are boundary
representation systems. Most machining algorithms which
use boundary representation systems, including APT, do
not require the system to possess all the information
necessary to represent the true solid model, ie, to contain
all the necessary face, edge, and vertex data relationships
needed to represent the solid 3. This is because the machining
algorithms require the user to supply any information that
cannot be obtained from the part geometric representation.
Hence, most of the burden is placed on the user instead of

Department of Mechanical Engineering, University of California,
Irvine CA 92717, USA

This research was conducted at McDonnell Douglas Automation,
Cypress, CA 90630, USA

on the modelling system. APT part programming has
become a skilful trade in itself. The part programmer must
be well trained in using the APT language, and must know
the various techniques to use when the algorithm does not
converge (as is frequently the case for irregularly curved
surfaces).

Boundary-representation based systems that have
machine tool path generation capabilities usually allow for
the description of general curved object surfaces. These
surfaces consist of arrays of parametric patches 4 which are
specified by a finite number of points. General parametric
surfaces are used extensively to model objects to be
machined that have irregularly contoured surfaces (eg many
injection-moulded objects). The main disadvantage of using
parametric surfaces in a modelling system is that it is
difficult to represent accurately a surface with non-
rectangular parametric boundaries, and it is difficult to
represent arbitrary holes through a surface. The accurate
representation Of these boundaries requires that a large
amount of data be stored with the surface in order to
approximate the curves.

The machine tool path generation algorithm presented
here can be used with any modelling system capable of
representing the true solid object. We used the University of
Rochester's PADL-2 s constructive solid geometry (CSG)
system since much of the software required for our
algorithm is available with PADL-2, and McAuto has the
interactive Unisolids/PADL-26 system. With Unisolids, an
accurate description of the part can be created interactively
very quickly, provided that the part can be represented
with the limited number of solid primitives available for the
construction.

Current CSG based systems including PADL-2 do not
have a primitive which can be used to represent a general
surface. This limits the number of realistically shaped
objects that the system can represent. However, a wide
variety of typical objects to be machined can be constructed
using the few primitives (block, sphere, cone, and wedge)
of PADL-2. The algorithm presented here can generate
machine tool paths for these objects more automatically
than APT because it exploits the complete solid representa-
tion available with the PADL-2 CSG system. No attempt
was made to retain any of the APT commands or language
(unlike Chan 7) with this system, since many of these
commands become unnecessary.

Several researchers have addressed the general problem
of machine tool path generation and verification using
constructive solid geometry or similar representation
schemes. Hunt and Voelcker 8,9 have studied extensively the
problem of NC machine tool path verification. Their work
provides a general scheme for uncovering various problems

volume 17 number 2 march 1985 0010-4485/85/020069-08 $03.00 (D 1985 Butterworth & Co (Publishers) Ltd 69

which may arise from an incomplete or inaccurate NC tool
path. In their method, first the individual commands are
examined to determine whether the tool will gouge the part
or clamps, and then the actual finished part is compared to
the desired finished part to determine the amount of
material remaining and the undercut regions. Arbab]° has
proposed a similar technique using his 'Deforming Solid
Geometry' and 'Realizable Shape Calculus' solid modelling
methods. Armstrong 11 has developed a method for tool
path generation and process planning for parts with planar
surfaces of different heights. This is a somewhat limited
class of parts, but the ability to combine tool path genera-
tion and process planning is highly desirable.

The tool paths considered in the studies mentioned
above were only those which would give cutter swept
volumes that could be represented using PADL-2 primitives.
This is a strict limitation since these primitives are not
general enough to represent five axis rotations as well as
non-planar three axis translations of bull (torus) ended
cutting tools. The main reason for requiring a PADL-2
representation of the cutter swept volumes was to ensure
that an exact representation of the final part produced by
the NC tool path could be computed and compared to the
desired final part. The ability to compare the actual final
part machined to the desired final part is important, but it
is not a necessary requirement for producing tool paths.

For the work presented here we take a different point of
view than was used in the studies mentioned previously.
Given a description of the final part to be machined and the
cutting tool parameters, we find a tool path which will yield a
part which is close to the desired one, regardless of whether
it is possible to verify the path using PADL-2 primitives. In
the near future we may have the ability to verify tool paths
to within normal machining tolerances using a secondary
octree spacial enumeration representation 12'13 and high
performance hardware. For simplicity, the method presented
here is for 3-axis machining. However, it may easily be
extended to 5-axis machining, and the required modifica-
tions to the algorithm will be noted at the appropriate
instances.

The algorithm presented in this paper is for one con-
tinuous motion (pass) of a tool across a part. To machine
an entire part, multiple passes or applications of this
algorithm must be used. The algorithm generates
parametric curves on the surface to be machined which
represent tool contact points. Roughly speaking, these
curves are obtained by intersecting the part surfaces with an
infinite plane, and determining the portions of the inter-
section curves that lie on the object. The parametric curves
are then shortened to produce non-gouging tool contact
intervals.

The key to obtaining each pass is the tool contact curve-
trimming algorithm which produces non-gouging tool
positions along any curve on the surface of a part. The
trimming algorithm uses an iterative APT-like procedure
which positions the tool on the contact curve at the inter-
section of the surface to be machined and the surface to be
avoided. The position found corresponds to a parameter
value on the tool contact curve which gives the last good
(non-gouging) tool position along that curve.

SURFACE DEFINIT ION
The first problem that we must address is that of determin-
ing which regions on the part are to be cut and which
regions on the part must be avoided. In APT, this problem

Drive surface = plane of page

Trajectory of CL points ~ " ~ ~ ~ ~
output for this pass ~ ~ ~ ~ [

~:~ Check
surface
C

rB fa /'ce ~~" 1 surface /1 Contact point
Su Cutter location output

for this point

Figure 1. A n example showing APT surface definitions

is handled by the part programmer for each continuous tool
motion (pass) as shown in the following example.

In Figure 1 let surface A be the surface robe machined
(part surface), surface B be the left side of~he par~, and
surface C represent a boundary of the part which must not
be gouged (checksurface). In addition to the part surface A,
a second surface on which the tool motion takes place must
also be specified. This is called the drive surface. In this case
let the drive surface D be the plane of the page. After
defining these surfaces using the APT programming
language, the part programmer instructs the APT module to
position the tool at the intersections of surfaces B and D,
and tangent to the part surface A. The APT module is then
ready to generate the cutter location file (CL file) by starting
from the current tool position and remaining on the drive
surface D tangent to the part surface A until the check
surface C is reached. The next tool motion can be generated
after new drive, part, and check surfaces have been specified.

In order to generate a tool path, we must have some
method for interactively selecting the surfaces to be
processed. With the PADL-2 CSG system, each surface is
actually a halfspace boundary of a solid primitive, and we
know only the location of the infinite surface. We may
evaluate the bounding edges of the surface by traversing the
CSG tree 14. One method of selecting a surface is to cast a
ray along a user-defined vector or along the view direction
from the screen cursor location. The surface selected would
be the first one the ray pierces. A second more automatic
method is to machine any surface on the 'top' of the part;
the top being defined as any surface whose normal has an
upward component. This method will lead to problems if
there is a surface with an upward normal that the machine
tool cannot reach. For instance, the surface may lie beneath
an overhanging portion of the part. The method we imple-
mented was to have the user select a surface by choosing
any two of its edges. This made it easy to choose all the
surfaces to be machined and all the surfaces to be avoided
with the same interactive routine. Automatic part surface
selection and path planning techniques were not considered
in this study. However, this method provides a strong basis
for such investigation, and could be used with systems such
as that of Choiet al is.

In our version of PADL-2, all the surfaces of a part
which intersect to give an edge have their pointers stored
with the boundary file data for that edge. Once the user has
selected at least two edges of all the surfaces to be
machined, the pointers to the surfaces that give rise to each
edge are retrieved. These pointers are then processed in a
routine that saves all non-unique numbers from a list of
numbers in order to determine the appropriate surfaces to
be machined.

70 computer-aided design

CUTTER MOTION GENERATION
Once the surfaces to be machined and the surfaces to be
avoided have been determined, we are ready to generate
cutter motions. There are two different approaches that are
commonly used to generate tool paths with the parametric
surfaces found in boundary representation systems. These
are the APT approach and the surface parameter tool
contact curve approach. Both of these approaches produces
a cutter location file, which is a list of cutting tool endpoint
positions and tool axes that will be input to a numerically
controlled machine tool. The NC machine will then move
the cutting tool to each one of the CL points in the sequence
that they are input. The motion of the cutting tool in
between the CL points is usually given by linear inter-
polation. However, if the input points form a circular arc,
then a circular motion in between these points is sometimes
used. Note that this methodof motion may produce some
error in the actual part machined, but theCL points can be
spaced together as closely as is neededfor any required
accuracy.

Before discussing machining algorithms, we will demon-
strate the difference between the tool contact point and the
actual point that is output to the CL file. For the case of
three-axis machining as in Figure 1, the tool axis vector
remains constant throughout the motion, and the three
coordinates of the tool end point are specified as a sequence
of points to be connected by s.traight line moves of the
cutting tool. For a given contact point and tool axis, there
is only one tool end point position which causes the tool to
be tangent to the part surface at the contact point, and it is
this endpoint location that is output to the CL file. The
method used to compute the endpoint for a known contact
point and tool axis is given in the Appendix. The tool
position in the centre of Figure 1 shows the difference
between the CL point and the contact point. Notice that
for the tool position on the right side, the CL point and
contact point are virtually identical. For five-axis machining,
the tool axis is usually kept normal to the part surface, so

] /Curve of contact
o, . I i i f o . . . , .= fo= surfa~ i ~ ~ i

I
I

Port I ~ ~ surface~ ~ Contact

I
Figure 2. Top and front views of a tool p a s s on a wedge

the tool endpoint will coincide with the contact point
throughout the motion.

As another example, consider the simple case of
generating one pass along the surface of the wedge shown in
Figure 2. In APT, the part programmer specifies the drive
surface and part surface as shown, and generates the tool
motion such that the tool axis lies on the drive surface, and
the tool end is tangent to the part surface. To generate the
tool motion, the APT algorithm begins with the tool raised
off the part surface, and iteratively searches for the location
of the tool end point that causes the tool to be tangent to
the part surface. For a planar part surface as in this case,
only one iteration is required. For a curved part surface,
several iterations are needed, depending on the surface
curvature. The heart of the iteration is a routine that
computes the minimum distance between the tool and part
surface. After the point of tangency is found, the corres-
ponding tool endpoint is output to the CL file, and the tool
is moved a small step along the drive surface in a direction
that is tangent to the part surface. The minimum distance
iteration for the tool endpoint location is then repeated.
The points of tangency on the part surface that are con-
verged upon for each step of thetool's motion form a locus
of tool contact point~ These points lie in a straight line for
the case of a wedge as is shown in Figure 2.

This example demonstrates that the APT algorithm will
cause the tool to cut a portion of the surface that may not
have been expected, since the user-specified drive surface is
not close to the contact points for this case. This is a
problem, as the user usually knows the area on the part
surface that should be cut and not where the input drive
surface should be located.

For general curved surfaces and tool paths, the APT tool
positioning algorithm requires iterative computation of the
minimum distance between the tool and both the drive and
part surfaces at every output point of the motion. Each
minimum distance computation is also iterative, so the
entire procedure is often computationally time-consuming
for curved parametric surfaces. Also there is no guarantee
that the iterations will converge for irregularly curved
sculptured surfaces. Apart from these disadvantages, the
two strongest points of the APT approach are:

• The tool motion may be in any direction specified
regardless of the surface parameterization; the motion is
defined entirely by the drive and part surfaces.

• The algorithm ensures that the tool will not gouge any
specified surface because the endpoint is found by using
a minimum-distance computation.

An equivalent tool motion to that shown in Figure 2 could
have been produced directly by specifying the trajectory of
the tool contact points obtained from the APT algorithm in
the form of a parameter curve on the part surface. Given
any point on the parametric curve and its corresponding
surface normal, we can position the cutting tool tangent to
the surface at that point by using the method in the
Appendix. As shown in the Appendix, the point of tangency
and the tool axis vector uniquely determine the location of
the tool endpoint. The APT method produced the same
points of tangency on the part surface for any position on
the drive surface. Hence, the cutter location files produced
by both methods give the same contact points and represent
identical tool paths. The obvious advantage of using
parametric tool contact curves is that no iterations are
required to generate the CL file. Only a simple algorithm
for stepping the tool along the contact curve is required.

volume 17 number 2 march 1985 71

J

(

Figure 3. Machining along constant parameter curves

Typically, parameter curve machining algorithms
produce tool motions in either constant u or v surface
parameter directions (surface coordinates = S (u,v) where
S eR 3). There are two main problems with this approach;
the first is due to the surface parameterization, and the
second is due to the method of tool placement as described
in the Appendix. The first problem is demonstrated in the
ruled surface of Figure 3. It is diff icult to machine this
surface along the constant u or v directions since the actual
stepover distance is much greater on the top than it is on
the bottom, even though the parameter increment on the
top is the same as it is on the bottom.

The second problem is that the method for placing the
tool given in the Appendix sometimes causes the tool to
gouge the part surface. The gouging occurs either on the
part surface being machined as in Figure 4(a), or at the
transition from one surface to another as in Figure 4(b).
The problem in Figure 4(a) occurs when the radius of the
cutting tool is large compared to the curvature of the
surface being machined. The part programmer may correct
it by selecting a smaller cutting tool, or it can be corrected
approximately with a routine which searches the curve for
points which cause the tool to gouge, such as point C in
Figure 4(a), and eliminates these bad points from the tool
path (as in the path from point A to point B in Figure 4(a)).

The problem shown in Figure 4(b) occurs when multiple
surfaces are to be machined consecutively in one pass. The
tool position at the end of parametric curve 1 causes the
tool to gouge the surface containing curve 2 and vice versa.
This problem can be avoided by decreasing the parameter
limit of curve 1 to end at point A, and changing the starting
parameter limit of curve 2 to begin at point B. This would
eliminate gouging of either one of the part surfaces, but
would not remove the material beneath the tool near the
intersection of the surfaces. This implies that the part that
would be produced by this tool path is not identical to the
part desired. However it is as close as can be obtained
without gouging the part surfaces. The part programmer
can obtain a more accurate tool path for this example by
selecting a smaller cutting tool.

The method used for finding the surface parameter
curve limitsA and B in Figure 4(b) is presented in the next
section of this paper, and is a key requirement for our tool
path generation algorithm. With APT, the problem of
gouging for this part would not have occurred as the part
programmer would have generated the two portions of the
tool path separately. The surface containing curve 2 would

be specified as a check surface for the first part of the tool's
motion, and the surface containing curve 1 would be
specified as a start-up surface for the second part of the
tools motion. This technique requires much more user
interaction than that of the surface parameter curve approach.
Note that the APT method also would not produce a part
identical to the part desired.

METHOD OF PATH GENERATION
IMPLEMENTED
The approach that we used to generate tool paths on
PADL-2 parts was to use parametric tool contact curves to
define the tool paths as discussed above, instead of using
the APT method. The method presented here can generate
passes which traverse a complex array of surfaces with no
constraints on the direction of cut. To generate one pass of
the cutting tool across an array of surfaces as shown in
Figure 5, the user defines an infinite plane which will
intersect the part surfaces that he has chosen to be
machined. To generate a tool path which will cover the
entire part, a family of planes parallel to the initial one
must be specified. Let us emphasize that the surfaces
selected to be machined are CSG solid primitive faces which
are represented as infinite surfaces (halfspaces) internally.

The algorithm first generates the infinite intersection
curves that the plane makes with the part surfaces using
standard routines available in PADL-2. Next, each inter-
section curve is classified against the object to determine
the portions of the curve which lie on the object (point
classification is a process used in PADL-2 to determine if
points lie inside, outside, or on an object). Each curve
segment is then stored as a simple geometric entity using
the method described in Check et a/16,17.

Once the pointers to each analytic curve segment have
been stored, they must be ordered in the same sequence
that they will be traversed by the cutting tool. This is done
by having the user select the starting point, and by comput-
ing which curve has an end point closest to the starting

a

I I
I I

p~t
C

I I
I I

Tool position at t h e - - Toot position at the
start of curve 2 end of curve I

b
Figures 4(a) and (b). Two types o f gouging that can occur

72 computer-aided design

1

Figure 5. Two sample tool passes over e Unisolids pert

point. The starting point is then reset to be the opposite
end of this curve, and the closeest end of the remaining
curves to this point is then found. This process is repeated
until all the curves have been ordered.

In addition to ordering the curves, a flag must be set for
each curve to denote the positive direction of cut relative
to the curve's parameterization. This is easily accomplished
by comparing the desired tool motion to the increasing
parameter direction. Also, an outward normal direction flag
is needed for each surface containing a contact curve and
for each check surface. Every PADL-2 surface has an out-
ward normal direction associated with it that is not
necessarily the direction that points to the outside of the
solid. To determine if the outward normal of a surface is
the outward normal of the solid, a point must be offset
from the surface in the direction of its normal. This point is
then classified against the solid object to determine if it lies
inside or outside of the solid. Note that this would not be
possible without a true solid representation.

TRANSITIONS BETWEEN CONTACT CURVES
In order to machine along analytic tool contact curves, we
must develop a method that eliminates gouging at the tran-
sitions between surfaces as in Figure 4(b), and at the check
surfaces. To do this we need to find the last parameter
value on the curve that gives a tool position that does not
gouge the check surface. The approach we used is similar to
that of the APT A RLEM III 2 processor. It requires that the
derivative of the contact curve with respect to the parameter
can be computed at any point on the curve, and that the
minimum (perpendicular) distance between the cutting tool
and the check surface can be computed for any position
and orientation of the cutting tool.

The algorithm is described, with reference to Figure 6

and

(a)

using the notation defined in the Appendix, as follows:

At some point t on the contact curve, evaluate ~he
derivative of the curve with respect to the parameter
at t.

(b) At this point, position the tool as in the Appendix.
(c) From this tool position, compute the minimum distance

to the check surface, along with the corresponding
point on the tool Pt, the point on the surface Ps, and
the unit surface 5hi.

(d) Check if II Pt - Ps II < 6, for some small a > 0. If it is,
then the iteration is complete.

(e) Compute the parameter increment At such that the
distance that the tool moves in the direction normal to
the planar approximation of the surface at Ps is equal
to the perpendicular distance between the tool and the
check surface. This parameter increment is given by:

< ds/dt At, 5nl > = < Pt - t°s, 5nl > (1)

or

A t = < Pt - Ps, 5nl > / < ds/dt, 5nl > (2)

These five steps are repeated until the convergence criterion
in step d is satisfied.

As with APT, it is difficult to prove that this algorithm
will converge for the most general combination of contact
curve and check surface. However for a straight line and
planar check surface, one iteration gives the exact solution.
Thus we can expect that the algorithm will converge when
there is a smooth curve and smooth check surface, and
when the iteration is started with a good initial guess for
the parameter. We have tested this algorithm with many
combinations of curves and surfaces, and in most cases the
algorithm converged in less than five iterations. Cases were
encountered that did not converge only when the
intersecting surfaces were very curved in comparison with
the tool dimensions. In these cases, use of a smaller cutting
tool easily corrected the problem.

As stated earlier, the algorithm requires both the
derivative of the contact curve with respect to the parameter,
and the minimum distance from the tool to the check
surface. Since each contact curve has an analytic descrip-
tion, the derivatives are readily available. The minimum
distance computation, however, requires more effort. The
calculations depend strongly on the fact that the normal to
the tool at its minimum point Pt aligns with the normal to
the surface at its minimum point Ps. This can be shown by
first noting that the minimum distance vector from a point
in space to a surface is normal to the surface at the
minimum. Then we can use this fact twice to show that the

d$1dtAt~
Figure 6. Curve tr im algorithm

/ /
/// ///

volume 17 number 2 march 1985 73

(V 3 , V l)

Corner rodius = r
Cylinder rodius = 6'

Figure 7. Minimum distance between a cyfinder and a tool

minimum distance vector between two surfaces is normal to
both surfaces.

For a plane and a sphere, the minimum distance can be
computed without iteration. For other surfaces in PADL-2
we found it necessary to use a simple first order Newton
iteration on one variable. There are several special cases
which must be considered, but the following is a representa-
tive procedure for computing the minimum distance
between a cylinder and the cutting tool.

It is assumed that we know the location of the tool end
P1, the tool axis unit vector V1, the tool diameter D, the
tool corner radius r, a point on the cylinder P2, the cylinder
axis unit vector V2, and the cylinder radius R as shown in
Figure 7. LetP3 be a point on the cylinder axis given by
P3 = P2 + xV2 where x is a scalar. For any value of x, we
can construct a vector V4 normal to the tool which passes
through P3 by the following vector computations (see
Figure 7):

P3 = P2 + xV2 (3)

V3 = P3 - Pl (4)

V5 = V3 - < V3, V l > V l (orthogonalization) (5)

U = < V5,V5 >-1/2 V5 (a unit vector perpendicular
to the tool axis) (6)

P4 = Pl + (a/2 - r) U + rV l (7)

V4 = P3 - P4 (8)

What remains to be found is a value f o r x that gives the
vector V4 which is also perpendicular to the cylinder axis
V2. If this is found, we have our minimum distance points
on the tool and cylinder simply by placing them the
appropriate distance along the vector V4. To find x, we use
a first order Newton's method as follows. For any x,
compute V4 as in equations (3) to (8) and let:

< v4, v2 > = e(x) (9)

We want e(x) = 0, so for the next iteration, solve equation
(10) for the value of A x that gives the best linear approxi-
mation of this condition.

de
e(x) =e(xo) + - - Ax = 0

dx

de
~ x = -e(xo)/

~x

(lO)

(11)

All that remains is to solve forde/dx, which is done as
follows:

de dV4
- < V 2 >

dx dx '

dV4 d

dx dx
(P2 +xV2 - ((D/2 - r) U + r V l +P1))

dV4 = V2 - (D /2 - r) --dU
dx dx

(12)

(13)

(14)

Substituting equation (14) back into equation (12) gives:

dU
dxde _ 1 - (D / 2 - r) < -~x ' V 2 > (15)

So we need dU/dx, which is given by

dU < V5, V5 >_l/2 dV5 d >-1/2)
- - - + - - (< VS, V5 V5

dx dx dx
(16)

where

dV5 d

dx dx

d V 5 d

dx dx

dV5

dx

(V3 - < V3, V l > VI)

(,°2 + x V 2 - PI - < P 2 +xV2 - PI,

V l > V l)

- V 2 - < V 2 , V I > V l

(17)

(t8)

(19)

and

d
~XX (< V5, V5 >-1/2) = _ < V5, V5 >-3/2

d V 5
< c/x.,V5> (2o)

This iteration on the value o f x is repeated by evaluating
equations (11) to (20) until e(x) = 0. When we have found
the correct value for x, the vector V4 will be perpendicular
to both the cutting tool and the cylinder. The minimum
distance points Pt and Ps required by the curve trimming
algorithm lie along V4.

As stated earlier, there are several special cases which
must be considered when performing the minimum distance
computation. The most common case (which was just
presented) is when the minimum distance is between the
toroidal part of the tool and the cylinder. However, the
minimum distance vector may intersect the bottom fiat
portion of the tool, or it may intersect the side cylindrical
portion of the tool. The presence of either of these
situations can be ascertained by some initial computations
regarding the angle between V1 and V2, and the location of
the tool end P1 relative to the cylinder.

SUMMARY OF THE METHOD
All the steps that are needed to compute tool paths have
now been defined. After the part surfaces and check
surfaces have been selected as in the second section, we
compute tool motions as follows:

74 computer-aided design

• slice the part surfaces with a planar surface and classify
the intersection curves with respect to the object to find
those portions of the curve which lie on the object

• order the curves, set positive cut direction flags and set
outward surface normal flags

• trim the ordered curves against all part surfaces and all
check surfaces to obtain nongouging contact curves

• output the cutter location data using a suitable stepping
algorithm and the tool positioning procedure in the
Appendix

This procedure will produce one pass of the cutting tool
across the part surfaces. To machine the entire part, multiple
applications of this algorithm must be performed. For each
pass, a new planar surface must be offset by an appropriate
lateral step-over distance from the one previously defined.

CONCLUSIONS

The research presented here has exploited the complete
solid representation available with constructive solid
geometry to develop a tool path generation algorithm that
requires less user interaction than APT. The APT method
requires the user to supply information that can easily be
determined automatically if the true solid model of the part
being machined is available. In addition to being more
automatic, the algorithm presented here is computationally
efficient because the minimum distance routine, which is at
the lowest level for this algorithm and for APT, is only
invoked on portions of the part where gouging may occur.

To generate tool paths, parametric surface curves
produced from standard PADL-2 surface intersection
routines are used to create a locus of candidate tool contact
points. These parametric tool contact curves are then
shortened using a minimum distance routine to produce
non-gouging tool motions. The method presented here has
been successfully used for a wide variety of objects and
complex arrays of surfaces.

APPENDIX
The following procedure is used to find the location of the
tool end point which will cause the tool to be tangent to a
surface, given the unit tool axis vector, the surface point,
and the unit surface normal vector. As is shown in Figure 8,
let Tend be the tool end point, Tax be the tool axis vector,
Spt be the surface point, and Snl be the surface normal.

Using the following notation:

<a, b > = a l b l +a262 +a363 (dot product) (21)

II a II = < a, a >1/2 (Euclidean norm) (22)

"Fox
t "sn l

Figure 8. Tool location technique

Construct a vector perpendicular to the tool axis in the
plane containing Tax, Tend and Snl.

V = Snl - < Snl, Tax > Tax (23)

If II V II = O, then the tool end Tend is equal to the surface
point Spt. Otherwise, unitize this vector and compute the
tool end point Tend.

U = V/II V II (24)

Tend = Spt + rSnl + (d/2 - r) U - rTax (25)

REFERENCES
1 APT Part Programming l iT Research Institute,

McGraw-Hill (1967)

2 APTIV ComputerSystem Manual, Volume 2,
Subroutine Library A4 V3 Computer Aided
Manufacturing-International, TX, USA

3 Requicha, A A G 'Representations of Rigid Solid
Objects' in Computer-Aided Design Encarnacao, J (ed)
Lecture notes in computer science (1980)

4 Faux, I D and Pratt, M J Computationalgeometry for
design and manufacture John Wiley (1979)

5 Voelcker, H, Requicha, A, Hartquist, E, Fisher, W,
Metzger, J, Tilove, R, Burrell, N, Hunt, W, Armstrong,
G, Check, T, Moore, R and McSweeney, J 'The PADL-
1.0/2 system for defining and displaying solid objects'
ACM Comput. Graphics Vo112 No 3 (August 1978)

6 Unisolids operational description Version 2.0,
McDonnell Douglas Automation Company, CA, USA
(August 1984)

7 Chan, B T F 'ROMAPT: a new link between CAD and
CAM' Comput.-AidedDes. Vol 14 No 5 (September
1982) pp 261-266

8 Hunt, W A and Voelcker, H B An exploratory study of
automatic verification of programs for numerically
controlled machine tools Production Automation
Project TM-34, University of Rochester, NY, USA
(January 1982)

9 Voelcker, H B and Hunt, W A 'The role of solid
modelling in machining - process modelling and NC
verification' Proc. SAE Int. Congr. Exposition, MI,
USA (February 1981)

10 Arbab, F 'Requirements and architecture of CAM-
oriented CAD systems for design and manufacture of
mechanical parts' Ph D Dissertation University of
California at Los Angeles, LA, USA (1982)

11 Armstrong, C A 'A Study of automatic generation of
non-invasive NC machine paths from geometric models'
Ph D Dissertation The University of Leeds, UK
(October 1982)

12 Meagher, D J The octree encoding method for efficient
solid modelling Image Processing Laboratory I PL-TR-
032, Rensselaer Polytechnic Institute, USA (August
1982)

13 Meagher, D J Octree generation, analysis and manipu-
lation Image Processing Laboratory I PL-TR-027,
Rensselaer Polytechnic Institute, USA (April 1982)

volume 17 number 2 march 1985 75

14 Voelcker, H B, Requicha, A A G Boundary evaluation
procedures for objects defined via constructive solid
geometry Tech. Memo. 26, Production Automation
Project, University of Rochester, NY, USA (1980)

15 Choi, B K, Barash, M M and Anderson, D C 'Automatic
recognition of machined surfaces from 3D solid model'
Comput.-Aided Des. Vo116 No 2 (March 1984)
pp 81-86

16

17

Check, T F, Dodsworth, J, Hartquist, E E and
Tilove, R B CGPAK: a computational geometry
group memo No 17 Production Automation Project,
University of Rochester, NY, USA (June 1982)

Check, T F, Dodsworth, J, Hartquist, E E and
Tilove, R B 'Representations in the PADL-2.0/N
Processor: Low Level Geometric Entities'
Computational Geometry Group Memo. No 12,
Production Automation Project, University of
Rochester (June 1982)

76 computer-aided design

