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Abstract

In this article we present a unified geometric treatment of robot
dynamics. Using standard ideas from Lie groups and Rieman-
nian geometry, we formulate the equations of motion for an
open chain manipulator both recursively and in closed form.
The recursive formulation leads to an Ofn} algorithm that ex-
presses the dynamics entirely in terms of coordingte-free Lie
algebraic operations. The Lagrangian formulation also ex-
presses the dynamics in terms of these Lie algebraic operations
and leads to a particularly simple set of closed-form equations,
in which the kinematic and inertial parameters appear explic-
itly and independently of each other. The geometric approach
permits a high-level, coordinare-free view of roboi dynamics
that shows explicitly some of the connections with the larger
bady of work in mathematics and physics. At the same time
the resulting equations are shown 1o be computationally ef-
fective and easily differentiated and factored with respect to
any of the robot parameters, This latter feature makes the ge-
ometric formulation artractive for applications such as robot
design and calibration, motion optimization, and optimal
control, where analytic gradients involving the dynamics are
reguired.

1. Introduction

From a certain point of view the problem of generat-

ing the equations of motion for a robot manipulator
presents no difficulty; by regarding the robot as a sys-
tem of coupled rigid bodies, the equations can be de-
rived straightforwardly from either Newton’s Laws or
Lagrange’s equations of motion. Yet even for the simplest
open-chain robots these equations can become extremely
complex; numerous formulations have therefare been pro-
posed that attempt to reduce their symbolic and numerical
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complexity.! Recent advances in computing technology
have diminished somewhat the importance of finding
ever more efficient algorithms. However, the increas-

ing complexity of methods for the design, control, and
motion planning of robot manipulators, combined with
the increasing complexity of the robots themselves, has
now shifted the emphasis to finding more systematic and
elegant dynamics formulations. For the appiications men-
tioned earlier, a dynamics formulation in which the robot
parameters appear in an explicit fashion, so that gradients
with respect fo these parameters are easily obtained, is
clearly desirable.

In this article we use standard ideas from Lie groups
and Riemannian geometry to formulate the dynamic equa-
tions for an open chain manipulator. The cornerstone of
our approach is to regard SE(3), the Euclidean group
of rigid-body motions, as a Lie group. By adopting this
geometric framework, many of the ad hoc definitions
and notational conventions found in existing dynamics
algorithms can be avoided. At the same time, explicit
contact can be made with the significant and growing
body of work in differential geometry; several researchers
have already shown connections between some of these
geometric ideas and various aspects of robotics (e.g.,
Loncaric 1985; Brockett 1990; Spong 1992). Here
our specific objectives are to suitably “geometrize”
both the Newton-Euler and Lagrangian formulations
of robot dynamics, extending the work previously ini-
tiated by Li (1989). We first derive a recursive Ofn)
dynamics algorithm in which the link velocities and
accelerations are expressed in terms of standard opera-
tions on the Lie algebra of SE(3). A comparison with
Featherstone’s (1987) recursive algorithm reveals some
interesting connections between his six-dimensional spa-

1. Balafoutis and Pate] (1991} discuss computational aspects of several
recursive dynamics aigorithms in the terature.
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tial vector notation and definitions to these general Lie
algebraic operations.

We also present a lagrangian dynamics formulation
that leads to a particularly simple set of closed-form
equations of motion. One of the strengths of this formu-
lation is that the robot parameters now appear explicitly:
they can be easily manipulated and factored from these
equations, without the complex rules or iterations typ-
ical of most recursive schemes. Applications of such a
set of closed-form dynamic equations are numerous. For
example, in robot adaptive control, the exact hinear rela-
tionship between the inertial parameters and the applied
forces and torques must be known a priori, and in many
robust control schemes the equations must be linearized
about some trajectory. Also, the performance of many
optimal robot design and motion optimization algorithms
depends crucially on knowledge of the gradient of the
objective function; often this requires differentiating the
dynamics equations with respect to various robot para-
meters, and with our closed-form equations this can now
be done guite easily. We also compare our formulation
with the spatial operator algebra formulation of Rodriguez
et al. (1991), who obtain similar results by establishing a
rather interesting analogy between robot dynamics and the
equations for linear state-space estimation.

We begin with the necessary geometric fundamentals of
the Euclidean group SE(3), focusing in particular on what
the correct Lie algebraic representation for generalized
forces should be, and the different Jacobian formula-
tions that are possible from the product of exponentials
formula. (See Murray et al. {1993] for a thorough intro-
duction to these topics.) The geometric formulation of
the recursive Newton-Euler dynamices is then presented,
followed by the closed-form Lagrangian formulation.” We
concinde with a discussion on how these equations can be
advantageous for certain robotics applications,

2. Geometric Background
2.1. SE(3) and se(3)

For our purposes it is sufficient to think of SE(3}, the
Special Euclidean Group of rigid-body motions, as con-
sisting of matrices of the form

&b

o1’
where @ & SO3) and b € R, Here 50(3) denotes the
group of 3 x 3 rotation matrices. Elements of SE(3) will

alternatively be denoted by the ordered pair (&, h), with
group multiplication understood to be (&, by)- (04, by) =

2. Portions of the Lagrangian dynamics formulation have been previously
reported in Brockett et al. (£993).
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(6,0;,3;b, + by). The Lie algebra of SE(3), denoted
se(3), consists of matrices of the form

[iw} v}
L 0 o0}|°
where
O -y W
w=1 wy 0 —uw
—why Wy 0

The set of 3 x 3 real skew-symmetric matrices forms
the Lie algebra of SO(3), denoted s0(3). Note that an
element [w] £ so(3) can also be regarded as a vector
w € R since in most cases it will be clear from the
context which representation is implied. an element of
s0(3) will also be simply denoted by w. Elements of se(3})
will also be represented as (w,v) € RS

On matrix Lie algebras the Lie bracket is given by the
matrix commutator: if A and B are elements of a matrix
Lie algebra, then [A,B] = AB —~ BA. in particular, on
$0(3) the Lie bracket of two elements corresponds to their
vector product: [wi,wy} = w) X wy. On se(3) the Lie
bracket of two elements (wi, vi) and (wn, vo) is given by

[(wr, ¥ (o, va)] = (W X wowhy X Vo —wy X ¥y). (1)

An element of a Lie group can also be identified with
a linear mapping between its Lie algebra via the adjoint
representation, Suppose G 1s a matrix Lie group with
Lie algebra g. For every X € G the adjoint map Ady -
g — g is defined by Ady(x) = XxX~'". If X = (O, b)
is an element of SE(3), then its adjoint map acting on an
element X = (w, v) of se(3}) is given by

Ady(x} = (Bw, b x Ow + Bv), (%)

which also admits the 6 x 6 matrix representation

Adg(x) = {Eb?@ g] [‘;’] 3

It is easily verified that Ady' = Adyg-r and AdyAdy =
Adyy for any X, Y € SE(3). The dual operator Adk :
se{3)° — se(3)" also has a matrix representation {with
respect to the standard dual basis on se(3)) given by the
transpose of Ady: if z = (m, 1) is an element of se(3)",

then T o
e’ 0’ ib] m
0 e } { £ } ' @)
Elements of a Lie alpebra can alsc be identified with
a linear mapping between its Lie algebra via the Lie
bracket. Given an element x € g, its adjoint repre-
sentation is the linear map ad, : g — g defined by
ade(¥) = X, v1 If X = (wy,vi)and ¥ = (un, V) are
elements of se(3), then

Ad;i(z} =

adyy = (W ¥ Wy, wy X Vg — Wy X V), (5
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which also admits the matrix representation

_ el O w2
) = [mi [wa] {%1' ©

Similarly, the matrix representation of the dual operator
ad; : se(3)" - se(3)" is given by its transpose:

wrn | =l vl m
ady(z) = [ o _[wl]] [ ¢ } N

2.2, Generalized Velocities and Generalized Forces

Recall that there exist two natural ways in which the tan-
gent vector X(t) of a curve X(t) = (@(2), b(t)) in SE(3)
can be identified with an element of se(3): if X(t) de-
scribes the motion of a rigid body relative to an inertial
reference frame, then XX™! = (@O~ b ~ @O~ h),
and X~ 'X = (0~ 1@, ®'h) are both elements of se(3).
The fatter is referred to as the body-fixed velocity repre-
sentation of X, since ©'© and © b are the angular
and transiational velocities of the rigid body relative to
its body-fixed frame, respectively. By a similar argument
we call XX~ the inertial velocity representation of X.
One subtle and important difference in the interpretation
of the inertial velocity representation is that, while 8@ ™!
is indeed the angular velocity of the rigid body relative
to the inertial frame, the translational velocity relative to
the inertial frame is not b — @@~ 'h, but simply b. Also,
observe that if X(¢) undergoes a coordinate transformation
of the form X{#} — X(&)T, where T & SE(3) is con-
stant, then its new body-fixed velocity representation is
TTIX7IXT = Adp-«(X™'X),

While generalized velocities can be regarded as el-
ements of se(3), in contrast forces and moments are
normatly thought of as inhabiting its dual se(3)". This
identification can be traced to the fundamental fact that
forces (which behave as gradient-like quantities) trans-
form differently under coordinate changes than velocities
{which behave as tangent vectors), Another possible ex-
planation involves virtual work: because work 1s the
time-integral of force times velocity, or moment times
angular velocity, one can associate forces with velocities
and moments with angular velocities. Forces and mo-
ments can therefore be naturally thought of as belonging
to the dual space of velocities and angular velocities, re-
spectively. With this point of view, a moment-force pair
(m. f) & se(3)" can be regarded as consisting of a skew-
symmetric matrix and a three-vector, respectively; i.e.,

0 —my my i
m]= | my 0 -my f=1ifH|. (&
—iny My 0 f

Somewhat paradoxically, under a change of reference
frame, forces transform as angular velocities, and

moments as velocities. To illustrate, let {m, f) be the
moment-force pair applied to a rigid body about the
origin of its body-fixed frame, expressed in body-fixed
coordinates. If this frame is now relocated to another
point on the rigid body, so that with respect to the inertial
frame it undergoes a right translation by T = (®, b}, then
the moment-force pair applied about the origin of this
new frame is given in the new body-fixed coordinates by

¥] [ e o] '[r ©

| O O m’
which can also be written

() m' ] _ g ([ 1] m

[ 0 o =M |0 o}/

Under a change of reference frame, therefore, forces
transform as angular velocities, and moments as veloc-
ities. For this reason one will find, in the kinematics
literature, forces expressed as skew-symmetric matri-
ces and moments as vectors. Strictly speaking, however,
the operator Ady is a mapping from se(3) to se(3) and
should not be applied to forces and moments. A more

mathematically consistent approach is to express m’ and
f' in terms of the dual adjoint operator Ady:

(16)

oTf (11

feT eTmTlim
B I I - £l

{m’] _ !:@Tm—@T(bxf)J
PR

or {m',f) = Adﬁ“r(m, f). Thus, under a change of coordi-
nates by some right translation T € SE(3) the generalized
force {m, ) transforms according to A:ii‘r. Both physical
and mathematical considerations therefore suggest that
moments be arranged as skew-symmetric matrices, and
forces as vectors, contrary (o the usual convention in the
kinematics literature.

2.3. Kinetic Energy as a Quadratic Form on se(3)

Given an inertial reference frame, the kinetic energy of

a rigid body can he computed in terms of the angular
velocity in the body-fixed frame, and the velocity of its
center of mass with respect o the inertial frame. Let x(2)
denote the trajectory {with respect o the inertial frame)
of a body-fixed frame attached to the rigid body's center
of mass. Let T denote the inertia matrix of the rigid body
with respect to its body-fixed frame, and m the mass. The
angular and transiational velocities of the moving body in
terms of its body-fixed frame are then X7'X = (wy, v,),
and the kinetic energy T is fw] Twy + $mv]v,. The
inertia matrix I and mass m define an inner product on
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se(3), given by the quadratic form

I o
0 m-¥ |’

where 1 is the 3 x 3 identity matrix.

2.4. The Producet of Exponentials Formule

We now review the product of exponentials (POE) for-
rula (Brockett 1983} for open kinematic chains. If a
right-handed reference frame is fixed at the tip of each
link of the chain, then the Euclidean transformation that
describes the position and orientation of the ith frame in
terms of the (i — st frame is f_; = eP*T*M,, where
M, & SE(3), P; € se{3), and x; € R is the joint variable,
o= 1,2, n. The frame fixed at the tip is then related
to that at the base by the product

flrn. .z =P M, JPeeM, . 12
By repeatedly applying the identity M~ ePM =
MOP M. f can be written
4A;z~, eAgxg .

fan oo, ap) = cetimM, (13
where A, = Py A; = M;PoM A =
(MM2)P3(M; M), etc. Alternatively, f can also be

rewritten as

MEBtTrleBQIE . Buzﬂ‘

f($1e$2-,-...16n}i -E {14}
where B; = M™'A;M, i = 1,...,n. The matrix expo-
nentials in this formula can be easily computed from the
following: let [w] € so(3) such that w} + w3 + w} = |,

and v € B, Then for any ¢ € R,

exp([{cg} ;} é) _ [eXp(gw}cb) tla] (15)

is an element of SE(3), where

exp(lwld) = L+ sin ¢ [w] + (1 — cos ¢) [w]?, (16)

b = (1 + () — cos @) [w] + (@ ~ siné) {w]v.
7

See Murray et al. (1993) for a derivation and discussion
of these formulas.

One of the attractive features of the POE formula is
the compact expression for the Jacobian. If f describes
the tip frame relative to the inertial frame, then recall
that f~!f is an element of se(3) corresponding to the
generalized velocity of the tip frame relative to itself.
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Using equation (14) and the fact that (eAx)””' = e‘AI,

direct calculation shows that

a

Fof = Boi, 4 e Bemnpg,_Brmp o sy

+ f_.*ann .. (,—BﬂJzBleBzwz e PBﬂIﬁ

T3,
which can also be written

f—if = M—‘] (An"‘i"'ﬂ + e‘ﬁA,E:ﬂnATI‘,“‘“]EﬁA“mﬂj’:H‘*l + - ) M
(19

= A@Mvt(_An:tn + e*A“x"Anm,eA"x"inM; + ...k
(20)

These formulas turn out to be especially useful in our
Lagrangian dynamics formulation,

3. A Recursive Formulation of Robot
Dynamics

We now develop a recursive formulation of robot dynam-
ics using the geometric framework constructed above. For
purposes of computational efficiency, we find it advanta-
geous to attach reference frames to each link at the joints
and to express the various quantities associated with each
link in terms of these local frames.® The general idea
behind the recursive formulation is a two-step iteration
process. In the first iteration the velocities and accelera-
tions of each link are propagated from the base to the tip,
each expressed in terms of local link frame coordinates.
In the second iteration the forces and torques are propa-
gated backward from the tip to the base, also expressed in
terms of local frame coordinates. We adopt the following
notation: for i = 1,2,...,n, let

o fiqa = Mies'th == the location of the link ¢ frame
relative to the link ¢ — 1 frame, where M; € SE(3},
S, ¢se(3), and z; € R

* 'V, = the six-dimensional generalized velocity of the
link ¢ frame, expressed in link ¢ frame coordinates.
H fi= fo1fiz-- fi—1.: describes the location of the
link 7 frame relative to the inertial reference frame,
then V, = £ f.

o J, & W50 45 symmetric positive-definite matrix
defined as

B = madn ] omdrd)

J‘i"‘ 4

Cmfrd g1 h

where (1) m; is the mass of link 7; {(2) r; is the
vector from the origin of the link ¢ frame to the

3. Here we follow the convention of Featherstone (1987), which is compu-
1ationally more efficient than Luh et al.’s {1980} convention of attaching
reference frames to the center of mass of cach iink.
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center of mass of link 7, expressed in link i frame
coordinates; (3} I; is the inertia matrix of link &
about the center of mass, relative to a frame at the
center of mass that is parallel to the link ¢ frame.
The inertia matrix about the link ¢ frame is then

I, — m;fr;)? (see, e.g., Greenwood [1965}).

+ F, = the total generalized force transmitted from
link ¢ — 1 to link i through joint i; the first three
components of F; correspond to the moment vector.

* 1, = joint i actuator torgue.

The recursive formulation can now be wntien using our
geometric definitions and notation as follows (see the
Appendix for the derivation):

* Initialization
Vo= Vo= Foyy =0 (22)

« Forward recursion: fori = | to n do

fiori = Mg (23)
V, = Adfff; !_(Vz_;} + 8 (24)
V, = 8,7 + Adf;fl ‘(VM) (25}
+ adAdf ) {V (8
* Backward recursion: for i = nto | do
Fi= Ay (Fip) + LV, —ady (Vo) (26)
r = STF, (27)

Note that the forward recursion for velocities and ac-
celerations is given solely in terms of the adjoint maps,
whereas the backward recursion of forces and moments
depends only on the dual adjoints. The algorithm bears
a close resemblance to that of Featherstone (1987). In
particular, his spatial vectors represeating the joint axes
are immediately identifiable with the 8,5 in our expres-
sion for f,..y,, and his spatial cross-product is simply the
Lie bracket {or adjoint) on se(3). A few differences are
also apparent: Featherstone's spatial inertia matrices are
arranged in the somewhat unorthodox form

Fooemyinl my o 1

7
Ii — thﬁrélz nzt[l‘ﬂ,] ) ("8)

and his spatial inner product 7, defined as (a.b) " {¢,d) =
a’d + b7 c. is replaced by the ordinary inner product in
our formulation. Featherstone estimates that his algorithm
requires. for a general n-link manipulator, 130n — 68
scatar multiplications and Hn -~ 56 scalar additions.
Since our algorithm is essentially a geometnc version of
Featherstone’s, the computational requirements should

be similar. Li’s formulation does not introduce the ad”
operator; consequently the generalized velocity (wy, vi) 18
decomposed into its angular and translational components,
which complicates his backward recursion.

4. A Lagrangian Formulation of Robot
Dynamics

In the Lagrangian formulation the dynamic equations can
be written as

T TE 7%
T = kaj(:z:}i‘j + ZZ Uijrloddsd; + opla),
j=l AN E
k=1,...n (29
where 7y is the applied force/torque at joint &, my; are
elements of the inertia matrix, 'z are the Christoffel
symbols of the first kind relative to the inertia matrix
representing the centrifugal and Coriolis terms, and
¢y are the forees due to gravity (see, e.g., Spong and
Vidyasagar [1989]). We now derive each of these terms
using our geometric formulation.
First, let the forward kinematics of a general n-link
open chain containing either revolute or prismatic joints
be given as in (13):

A.m f:,Azfz -

fre, .. MM, (30)

k) =€

where Ay, ... A, £ se(3), xy,..., 1, are the joint vari-
ables, and M € SE(3). We make the following definitions.
With the joints in their zero position, let M; = (&, by}
be an element of SE(3} denoting the body-fixed frame
attached to the center of mass of link ¢, expressed relative
to the inertial frame. Let m,; denote the mass of link 4, I,
the 3 x 3 inertia matrix of Hnk ¢ relative to its body-fixed
frame, and I, the inertia matrix of link 7 with respect to
the inertial frame; observe that L, is defined differently
from the previous section. Note further that I, and 1, are
related by I, = &, L67 — m,[b;]*. The map f; defined
by

A[ﬂf(f)A;k'.‘g .

JHCI Arm, 3

1 = 1,2,...,n, then describes the center-of-mass frame
of link 2 relative to the inertial frame, as a function of the
joint variables xy, ..., 2.

LT =e

4.1. The Inertia Matrix

The first step in the Lagrangian formulation is to derive
the total kinetic energy T of the system. In terms of the
inertia matrix 7 can be expressed as

T = Z M, (L), 5. (3D

)
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If T; denotes the kinetic energy of link i, then T = Y 7.
From the prior definitions the body-fixed generalized
velocity of link i's center of mass is 7! f; = (@, ¥,),
and T, = 10T L@; + Lm; 979, In terms of the joint rates
S, can be expressed as

£ = Adyy (Atjcj_ +Ad _a L (Aidi) .

+ AdeﬂAine,Am(A;fsl)). (33)

If the quantity in parentheses, A; &, + Ad A (Aydp)
+..., is denoted by (w;, v,), then £'f, = Adyg-s

(w;, br;). In vector notation f[i f;- = {@;, V;} can now
be expressed as

[ B _ G;T 0 &
L v, - —-[@zﬁbl}@‘)r @3- v, |’

By applying the identity O[b]@7 = [@b] for ® = SO(3)
and {b] £ so(3), the kinetic energy T; of link ¢ can be
expressed in terms of {w;, v;) as

(34)

ff;—:.:

Lo r s ( 1 mifbi] | | w,
5 Lwe Vi | mifb 1’ m, -1 Vi

} s (3%

s

where 1 is the 3 x 3 identity matrix and L, is the iner-
tia matrix of link 7 relative to the inertial frame. This
quadratic form is used to define an inner product on
se{3):

DEFITION 1. Let {-,-); be an inner product on se(3)
defined by the guadratic form

(36)

I m;[b;]
mib)T m-1 |

T; can therefore be written as {(w;, v;), (w;, ¥v:));. We also
adopt the following notation:

DEFINITION 2. Given Ay, ..., A, € se(3) and
Z1y---,Tn € &, define the map Ad; 2 8e(3) s se(3)

by
/‘“A L. ”Aziﬂx A:‘Ix - A T 4 :
Adf,-(H)z{€ ’ € HHe ij,zfj‘
{37

Note that by this definition AdJ(A;) = A;. Using this
notation (wy, v;) from above can be written in terms of
the kinematic parameters as

wav) =Y AdTHA.

J=1

(38)
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The kinetic energy of link ¢ is then

To= 0O AdT @A), S AT A (9)

3=t

=1

and 7' = 3" 7T;. Equating T with 5. 3 my(x¥ik; and
matching terms, the components of the inertia matrix are
given by

ma = > (AdALD AL (A ), (40)

k=j

for j =i, and my; = m,,.

We now express the inertia matrix in block-matrix
form. Let A & R™*™ be a block-diagonal matrix of the
form

A0 .00
0 A4 ... 0

A = ) . . 41y
o . Ay

where 4; € R® is the six-dimensional column vector
representation of A, &€ se(3). Also, let (Ad}) denote the

6 x 6 matrix representation of the map Ad} 1 se(3)
se(3); that is,
h_| e o
(Ad}) = {[b}@ @], (42
{@) b} = oAz A A

0 1

Then define £ € R %5 1o be the lower block-triangular
maftrix

it 0 0 ..o
(Adl) 1 0 .0

c=| (Ad) (Ad) 1 .. 0 43)
(Ad) (Ad}) (ad}) ... 1

and D; € RE*® to be the kinetic energy quadratic form
associated with link 4:

L myfb]

D = mib)T m 1

(44)
Observe that D, 1s a constant matrix with exactly 10
independent parameters. Let D & R6%6" be the block-
diagonal matrix

D0 .00
0 Dy ... 0

D=1 | B (45)
o ... .. -,
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The inertia matrix M{z) € B"*" is then given by

M=ATLTDLA (46)
Note that all the inertial parameters are contained in the
constant block-diagonal matrix D, whereas 4 is a con-
stant matrix containing only the kKinematic parameters,
and £ is the only matrix depending on the joint val-
ues. This inertia matrix factorization clearly separates
the kinematic and dynamic parameters and is similar

to the factorization obtained by Rodriguez and Kreutz-
Delgado (1992). However, the kinematic parameters
appear explicitly as matrix exponentials in the £ ma-
trix above; in the factorization of Rodriguez the ijth
block entry of the £ matrix is of the form

o) 1]
il 1]

where p,; is the vector from the origin of link frame 1
to the origin of link frame j. Li’s (1989) formulation
does not provide a factorization, and the inertia terms are
more complex, because the forward kinematics are not
expressed as a strict product of exponentials.

The factorization of M in (46) is related to the vector
and matrix quantities appearing in the recursive Newton-
Euler formulation by the following formulas: define

S = Diag(8,;,8,,...8,] € R 47
J = Diaglh. g2, ... Ju] € RO (48)
1 G--- 0
Ad, - 1 -0
G = . : {49}
Mo Al
Q = Diag[Adm,, Adat,, - .- Adm, m, |- (50
Then M can be factored as
M =8¢ 768 (5D

where 4= 0S, £=00Q ' and D= Q- T7Q"

4.2, Coriolis Terms

The Coriolis terms of the dynamic equations involve
computation of .5, the Christoffel symbols of the first
kind relative to the metric defined by the inertia matrix:

b dmy, dmy,
rzjk - 5 ( - - afL‘k

(9.1";‘
and Ty = [ k. The following result is useful for com-
puting the Christoffel symbols:

om bi

dr,

{52}

Park et al.

ProPOSITION 1.
in Definition 2,

Given the map Ad; : se(3) — se(3) as

i : } . . .
O adiqp = [ ATOG_BLAD, iZksy
Oz 7 0 atherwise

(53)

Here [, -] denotes the Lie bracket on se(3). The foilowing

result. while not directly used in computing the Corio-
lis terms, is useful for, e.g., linearizing the dynamics or
computing the curvature tensor.

PROPOSITION 2. Given the map Ad}
in Definition 2, suppose ¢ < j. Then

: 5e(3) — se(d) as

& & . _
E%Ad (B) = (54)
Ad§ [AdY_([AdL_(B), AL AL}, i<I<k<]
Ad¥ ([AdL_ ([Ad]_ (B A AL}, i<k <1<

otherwise

Using these formulas, the Christoffel symbols are calcu-
lated to be the following:

« Case k<<

I : . Y .
Pie = 5 D _(AGIAdT (AR, A, AdT (A

+ (A (TAET (A A DL AT HAD),

+ (Ad] AT (A, A D, AT (A )

(55)

+ Case 214 <k < j
[ N +
Lik = 5 2 _(A/(ALT (A0, A D AL A0}

+ (A AT (AL, A D AP (AN

— (AdF(AdLY (A ArD. AT A )
(56)

o Case 3:i< 7 < ks

1 i
Figk = E;(Adi

~ (ADFIAAT (A, Apl). Ad (A

dzfil(A ) A ]} Adk+l(Ak)>

~ (AdF(ALT (A ), AeD, AdTH (AN
(57)
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4.3. Potential Terms

In what follows we assume the only source of poten-

aal energy is gravity. Let g denote the gravity vector
expressed in the inertial reference frame. Recall that

i = ez A, M, describes the center-of-mass
frame of Hnk ¢ relative to the inertial frame. Define the
constant vector r =100 0 1]7. The Cartesian position of
the center of mass of link 7 in inertial frame coordinates
is then f,r. The potential energy of link i, denoted U/}, is
{mg. f.r), where {-,-) is the standard Euclidean norm.
The total potential energy of the manipulator is then

£

U=>Y {mg fr).

r=1

(58)

The potential term in the equations of motion {29) s
therefore given by

After some manipulation, the potential term can be ex-
pressed as

or =y (mag, fi MTTAGETHAOMLEY (59)

=k

for 1 <k <.

4.3.1. Example

The dynamic equations for a general open chain ma-
nipulator, ignoring gravity, can be written as 7 =
M(x}37 + Cia, 2)4. For a general 212 manipulator,

M(z) = (60}
(A1, A + (AdS(A), AMA D {Ad(A), As)y J
(Ad3(Ay), Az)s {Az, A2}z

the C(z, &) matrix is as follows:

e = (A (AL, AsD), Ad3(A ) )ha 710 (61)

ez = (AdI(IA}, AsD), Ad3 (A2 s (62)
+ (Ad3(A, Agl). As)y 35

ez = (AdY(IAL, Az, Ad3(A D) 41 (63)

(Jgg - 0 (64}

4.4. A Coordinate-Free Interpretation of the Inertia
Marrix

One of the additional insights acquired from the geo-
metric Lagrangian formulation is that the inertia matrix
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can be interpreted as the pullback of a certain Rie-
mannian metric, We illustrate this for an all revohute
joint manipulator. Let f; : T% — SE(3) be the kine-
matic map to the center of mass of link ¢ as in (31),
where T is the i-dimensional torus, and define a map
FoT™ — SE(3) x SE(3) x -+ x SE(3) {n copies) by

f@y = (fulz), fkz),. .., fulz)) (63)

Define a Riemannian metric on the range by ¢ =
R g R & gy, where each g; is the metric de-
fined by the generalized inertia tensor of link 4. The
inertia matrix of the robot is then the pullback metric
F* g, which admits the coordinate representation JTGl.
where J is the Jacobian of the map f. In our factoriza-
tion G can be taken to be the block-diagonal matrix D,
and from the product-of-exponentials formula, J can be
factored as £(x)A.

5. Conclusions

Using methods of Lie groups and Riemannian geom-
etry, two new formulations of the Newton-Euler and
Lagrangian dynamics equations for robots have been pre-
sented. A principal advantage of this approach is that

a high-level description of robot dynamics can now be
obtained: explicit connections between the equations of
motion and standard concepts from Lie theory are es-
tablished, avoiding the need for ad hoc definitions and
choices of notation.

The recursive Newton-Euler formulation provides a
computationally efficient O(n) algorithm for computing
the mverse dynamics. The Lagrangian formulation pro-
vides a simple closed-form set of equations of motion that
are particularly useful for applications in robot design and
control. Spong (1992} shows that if a manipulator’s iner-
tia matrix has vanishing Riemannian curvature, then there
exist a set of coordinates in which the dynamic equations
assume a particularly simple form. The curvature of the
inertia matrix can in turn be regarded as a measure of
the dynamic response of the robot, providing information
about the sensitivity of the dynamics equations to certain
robot parameters. A reasonable argument can be made
that minimum curvature is a useful measure of robot per-
formance. The explicit formula for the curvature tensor is
given by

Ti

T O ) |
Rijpr = 8;: ~ ‘Eif' + 3 (Dup Dl = Tie T (66)
ral
where I, = 30, m**T, 5, and m¥ are the com-

ponents of the inverse of the inertia matrix. With our
formuias for the derivatives of the Christoffel symbols,
the curvature can now be computed directly. Motion
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optimization applications can also benefit: minimum
energy paths, for example, have the objective function
J(x) = [ 3% mi(x)id, dt, and solutions can be found
much more robustly and efficiently if the gradient of J{x)
(which involves derivatives of m;;(x)) is available.

The derivative formulas are also useful for Hnearizing
the equations of motion about a nominal trajectory——
many feedback controllers are based on such a set of
linearized equations, for example. Most adaptive con-
troilers also update the inertial parameters of a robot, and
in many cases identifying a minimal parameter set can
significently improve their efficiency. In our Lagrangian
formulation the inertial parameters appear linearly in an
explicit way, so that they can be easily factored from the
general equations of motion. Finally, it should be possi-
ble to extend the geometric formulation fo treat general
multibody systems with closed chains and flexible links,
similar to the ideas explored in the spatial operator alge-
bra formulation of Rodriguez et al. (1991).

Appendix

We derive here the recursive Newton-Euler dynamics
algorithm presented in Section 3. We begin with the for-
ward jteration of velocities and accelerations. Let the
transformation from frame ¢ — | to frame 7 be given by
ficyi = Méesf*’*, where M; € SE(3),8; € se(3), and
T, is the scalar joint variable. It is trivial to verify that

:__1, i fiovi = 8;#;. Now fi, which is the link 7 reference
frame relative to the inertial frame, is

fo=forfiz- fiois (67}
Let V; = f'f; be the six-dimensional generalized
velocity of the link 7 frame, expressed m link ¢ frame
coordinates. Then
o d
Vi= ficificia) id“(fzwlfiml.z) {68)
t
= [T i e+ B fe 69
= Adfw} ,(Vl‘f) + 8,4 (70)

as claimed. To find the generalized acceleration V,, ob-
serve first that

o

71
di 1)

d
Adf:jg‘l{v?'wl) - EE( lfi,ivimlfv,—l.z}

It

FRLY Y S (72)
+ f1:i1'zvz—if1—l.z -+ f;:..lg';_vf~f.}éz—i_'g-

—1

Applying the identity f;'m = ~f\ foa STV, can

now be simplified to

Vi=Ad, s (Vio)+[Ad— (V) Si] + S5, (73)

which agrees with the recursive formula for the accelera-
tion.

We now derive the backward recursive algorithm for
the forces and torques. The following three-dimensional
vectors are all expressed in terms of local frame coordi-
nates: v; = velocity of the link ¢ frame, w; = angular
velocity of the link ¢ frame, a; = acceleration of the link
i frame, &; = acceleration of link 4's center of mass, r; =
vector from origin of link ¢ frame to center of mass of
link ¢, f; = resultant force applied to link i, m; = re-
sultant moment about the origin of the link ¢ frame. In
addition, let m; = mass of link 4, and I, = inertia ma-
trix of link i about the center of mass, relative to a frame
at the center of mass that is parallel to the link i frame.
We now show that the standard equations of motion for
a rigid body (as derived in, say, Greenwood [1965]) are
equivalent to our recursive formulation. The equations of
motion for link { are

f; = m,a, (74)
m; = Ing + w; X L‘QJ,; +r; % Tfliﬁ,,;, (75)
where
a, = Vv, + Wh XV (76)
8, =3, +w; XTI 4w % (W X (77

Note that the moments are summed about the origin of
the link ¢ frame rather than the center of mass of link
¢. Writing the cross-product of two vectors n x v as
the matrix-vector product [u]v, the equations of motion
become

f; = mg (Vi + [wilv, + fan]r, + [w,Pr,) (78)

m; = L +wy % Liw; + myfe v, + myrdiw, v,

+ el e + mylr e Pr.. (79)
We now write out the resulting translational and rotational
equations of motion from our geometric formulation,

and show that they are equivalent to equations (78)

and {79). The six-dimensional generalized force vector

F, = tm,1;). By definition F.4, is the force/moment ex-
erted by link ¢ on link 7 + 1, expressed in link ¢ + | frame
coordinates. Then Ad}_, (F, ) 15 F o transformed 10

L

link 7 coordinates, and the sum of the generalized forces
acting on link 7 are, again in terms of link i frame coordi-
nates,

(m, f)=F - Adf——l (F.. {80}
LR Y

The minus sign is a consequence of our definition of
F; ;. With these identifications the force equatiens are

£, = mo¥, + [wylv; + fwin, + o, Pr), (81

Park et al. 617



which is identical to equation {78} Also, the moment
equation is

m; — FLw, — nglr, J w o ey

- 5{ ”Ef[wzﬂ

+ v Jfwn s

wi; i,

vl w, ol )lEdy,

P tass

Lsmc the JéCObt ;denm\ ax b >< Ch4+ e x {ax b) +

equa} to 11y {rfliwj} r.. and the last two terms mmplzfy
to ;i e v, which verifies the moment equations.
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