
 
 

 

  

Abstract— An important goal in robot-assisted movement 
therapy after neurologic injury is to provide an optimal 
amount of mechanical assistance to patients as they complete 
motor tasks. This paper presents a computational model of how 
humans interact with robotic therapy devices for the task of 
lifting a load to a desired height. The model predicts that an 
adaptive robotic therapy device will take over performance of 
the lifting task if the human motor control system contains a 
slacking term (i.e. a term that tries to the reduce force output 
of the arm when error is small) but the robot does not.  We 
present experimental data from people with a chronic stroke as 
they train with a robotic arm orthosis that confirms this 
prediction. We also show that incorporating a slacking term 
into the robot overcomes this problem, increasing load sharing 
by the patient while still keeping kinematic errors small. These 
results provide insight into the computational mechanisms of 
human motor adaptation during rehabilitation therapy, and 
provide a framework for optimizing robot-assisted therapy.  

I. INTRODUCTION 
here has been increasing interest over the past decade in 
using robotic devices to assist in movement training of 

the arms, hands, and legs following stroke [1]. The 
predominant robot control paradigm that has been 
implemented to date is what clinicians refer to as “active 
assistance”. In this paradigm, a therapist or robotic device 
provides mechanical assistance to the patient to help 
complete a desired movement, but only as much as is 
needed. The rationale for this approach can be summarized 
by what might be called the “assist-as-needed hypothesis”:  

Providing too much assistance will cause the patient to 
decrease efferent output, which will decrease use-
dependent neuroplasticity.  On the other hand, providing 
too little assistance will reduce range of motion and 
afferent input, limit the number of movement repetitions 
that the patient achieves, and in some cases make 
accomplishment of the desired motor task impossible, 
causing frustration, decreasing motivation for training, 
and again reducing plasticity.    

According to this hypothesis, then, providing the right 
amount of assistance is essential for optimizing training. 

Several controllers for robotic therapy devices have been 
designed with the assist-as-needed hypothesis in mind. The 
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first controllers used proportional position feedback 
controller to provide assistance-as-needed, as such 
controllers increase force as kinematic error increases [2, 3]. 
Other controllers have taken the approach of automatically 
triggering robotic assistance based on a measurement of 
position error or of a delay in time-to-complete the desired 
task [4, 5]. Strategies have been proposed to iteratively 
adapt the stiffness, timing, desired trajectory, or forces of the 
robot as a function of real-time measurement of the patient’s 
performance of the task [6-11]. 

It has not yet been possible to base the control laws for 
robotic assistance on a mechanistic understanding of how 
the human motor system interacts with a robotic therapy 
device during rehabilitation therapy. Perhaps the work that 
has been nearest to achieving this goal is recent work from 
our group that showed how the problem of providing 
assistance-as-needed could be posed as an optimization 
problem [12].  We then solved for the optimized assistance-
as-needed controller for a walking task. However, this study 
examined how unimpaired people adapted to a robotic force 
field, rather than how people with a neurologic impairment 
participated in a real rehabilitation task. 

Here we develop a computational model of how people 
with weakness interact with a robotic therapy device for a 
real rehabilitation task: lifting a load to a desired height.  We 
then use the model to gain insight into designing a controller 
that assists-as-needed. We present experimental data from 
eight people with a chronic stroke who trained with a robotic 
arm orthosis that confirms the model’s predictions.  

II. COMPUTATIONAL MODEL OF HUMAN-ROBOT LOADING 
SHARING 

A. Model Definition 
Consider a therapy task in which the patient is instructed 

to lift his or her arm to a height x = xd with the assistance of 
a robot. We wish to predict how the percentage of the load 
that the patient lifts depends on the robot’s behavior. 

We assume that the dynamics of this task can be 
linearized when x is near xd, so: 

Mx Bx W u R+ = − + +   (1) 
where M and B are the combined mass and damping of the 
patient’s arm and the robot, W is the weight of the patient’s 
arm, u is the vertical lifting force from the patient’s muscles 
expressed in hand coordinates, and R is the vertical assisting 
force from the robot expressed in hand coordinates.  Define 
the position error as e = x – xd. We hypothesize that the 
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human controller for this task is of the form: 

h h hu k e g e f u= − − −    (2) 
This controller has three terms that model known aspects of 
human motor behavior. The first term is a proportional 
position control term with stiffness kh. This term 
corresponds to the well-known spring-like impedance of 
human limbs, which arises due to muscle mechanics and 
segmental reflexes. The second term is an integral position 
control term with gain gh. This term acts like an error-based 
adaptive controller that forms an internal model of the forces 
required to lift the arm to the target: if there is a persistent 
error e, then this term causes the controller to increase its 
output to reduce this persistent error, stopping when u = W 
and e = 0.  The third term is a slacking (or “forgetting”) term 
with a forgetting rate fh ≥ 0.  Recent studies of human motor 
adaptation to novel force field environments have observed 
the presence of such a term in models of the human 
controller [13]. The model presented here incorporates 
slacking in a continuous-time formulation for the first time. 
The effect of this slacking term is to cause an exponential 
decay in the human force output /

0
htu u e τ−=  with a time 

constant τh = 1/fh when position error is small. 
A key prediction of this model of human motor control is 

that the force output of the human and the position error will 
be linearly related in the steady state: 

( / )h hu g f e= −   (3) 
Note that this relationship should apply regardless of the 
way that the robotic therapy device assists in the lifting task.   

B. Robot Controller and Human/Robot Closed Loop 
Dynamics 
 Now, consider robotic therapy devices that use a 

control law that is similar to the form of the human control 
law to provide assistance for the lifting task: 

r r D rR g e k e k e f R= − − − −   (4) 
where R is the vertical assisting force from the robot, gr is 
the integral gain, kr is the proportional gain (robot stiffness),  
kd is the damping, and fr is the robot forgetting rate. This 
control law can be used to approximate a range of possible 
control laws for robotic therapy devices by varying the 
gains, including a standard adaptive controller, as we show 
below. 

 Given the models of the human and robot controllers, 
we would like to answer two questions of particular interest:   

1) What is the position tracking error that the interacting 
patient and robot controllers achieve? 

2) What is the % of arm weight that the patient supports?   
Within a rehabilitation framework guided by the active 
assistance hypothesis, we desire the position error to be 
small and the percentage of arm weight that the human 
supports to be large for maximal therapeutic benefit.   

C. Model predictions of steady-state behavior 
We now examine what the model predicts for steady-state 

behavior for three special cases.   
 
Case 1: Robot does not slack, patient does 

The first case is when the robot does not contain the 
slacking term, but the human controller contains both the 
integral and slacking terms.  Substituting fr = 0 into Eq. 3 
and solving for the steady state we find: 

0 0e and u= =  
Thus, the model predicts that the tracking error will be zero, 
and that the robot will fully support the arm.  Essentially, the 
robot controller integrates position error, eliminating the 
error, and the human adaptive controller allows the robot to 
“take over” the task because of its slacking property.   

 
Case 2: Robot and patient slack 

Now consider the case in which both the human and the 
robot slack. In the steady state the tracking error and load 
supported by the human are: 

 /
/ / 1 /

h h

h h r r r r

g fW u Ae and where A
g f g f W A g f

−
= = =

+ +
 

Note that tracking error is small if gr/fr and/or gh/fh are large, 
while the load sharing depends on their ratio A. If we design 
the robot so that gr/fr << gh/fh and the patient’s motor control 
system has the property that gh/fh >> 0, then 

0e and u W≈ ≈  
This result is what we desire of the robotic training system: 
the error is small and the patient lifts the weight. Note that 
we can make gr/fr small by making the robot slacking rate fr 
large (i.e. incorporate enough robot slacking).    

We have assumed so far that the patient can lift the 
weight of his arm. When the maximum force that the patient 
can generate is limited (umax < W), the robotic controller 
with slacking will cause u to approach umax (with the 
closeness dependent on gr/fr and gh/fh) and the tracking error 
will be:  

 ( )r r maxe f g W u= − −   
Thus, with this controller, the robot creates the residual 
force R necessary to make the tracking error small when the 
patient is weak, if gr/fr is sufficiently large. 

Based on the analysis of Case 1 and Case 2, we state the 
following model predictions: 

Model Prediction 1: If the robot has an integral control 
term but does not incorporate slacking, then tracking error 
will be zero and the robot will take over the lifting task. 

Model Prediction 2: Incorporating robot slacking will 
keep tracking error small but cause the patient to perform 
significantly more of the task.  

 
Case 3: Human slacks, robot is position-controlled 
A third interesting case is when the robot does not 

incorporate integral or forgetting terms (gr = 0, fr = 0), but 
operates with proportional position control (kr > 0). This 
case approximates the situation with most existing robotic 
therapy devices, which drive the patient’s limbs through a 
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desired movement using proportional position feedback 
control. We assume the human controller still incorporates 
slacking (fr > 0).  In this case we find: 

/
/ 1

h h

h h r r

g fW u Ae and where A
g f k W A k

−
= = =

+ +
Thus, the human always lifts less than W, with the load 
sharing determined by the ratio of gh/fh to kr.  If  kr >> gh/fh 
and kr is large then 

0 0e and u≈ ≈  
and the model predicts that the human will not lift any of the 
load.  If kr << gh/fh and gh/fh is large and maxu W>  then:  

0e and u W≈ ≈  
and the model predicts that the patient will lift the full load. 
The amount of patient participation in the lifting task 
depends on the robot stiffness kr relative to the human 
parameter gh/fh. We found below in experiments with two 
chronic stroke subjects that the parameter gh/fh was large (> 
4000 N/m). Thus, we make the following prediction: 

Model Prediction 3: Patients will exert effort in 
completing the task even when aided by a position 
controlled robot with moderate stiffness, but this effort will 
be less than when assisted by a more compliant robot. 

We performed experiments to test the first two model 
predictions. We have not tested the third prediction yet.  

III. EXPERIMENTAL METHODS 

A. Robotic Therapy Device 
The robotic orthosis we used to test these hypotheses is 

called “Pneu-WREX” [11, 14](Fig. 1).  It is a 4 degrees-of-
freedom robot based on a passive arm support called 
WREX, developed for children by Rahman et al. [15].  
WREX uses elastic bands to balance the weight the arm.  
Pneu-WREX is a larger version of WREX that uses a spring 
to balance its own weight, and incorporates pneumatic 
actuators to generate active forces.  The development of the 
force controller for the pneumatic controller is described in 
[11].  Essentially, Pneu-WREX is a lightweight exoskeleton 
that allows a wide range of motion of the arm in 3D space 
and can apply relatively large forces (upwards of 40 N) to 
the arm with a bandwidth of about 6 Hz.  Pneu-WREX also 
includes redundant hardware and software safety features. 

B. Active-assist controller 
To control Pneu-WREX as it interacted with the patient’s 

arm, we implemented an adaptive controller, which is 
described in detail in [16]. Briefly, the controller calculates 
the force R that the robot applies to the arm using an 
adaptive feedforward term â  that estimates the extra force 
needed to lift the patient’s arm (i.e. the force besides what 
the patient is generating), and proportional and derivative 
position feedback terms: 

ˆ P DR a k e k e= − −   (5) 
The term â  is estimated with a parameter update law: 

( )-1ˆ ˆ- -ra f a e e= Γ + Λ    (6) 
where Γ  and Λ  are positive gains used in the adaptive 
controller.  The parameter rf is the slacking rate, which is a 
novel modification that we made to the conventional 
adaptive control update law, in order to make the robot 
attempt to reduce its force when tracking is small [16].  
Combining the controller and adaptive update laws gives: 

r r D rR g e k e k e f R= − − − −  (7) 

where 1
r r pg f k −= + Γ Λ and 1

r p r Dk k f k−= + Γ + .  Eq. 7 is 
identical to the equation assumed for the robot controller in 
the computational model (i.e. Eq. 3).  

 
Fig. 1.  Person with a stroke participating in movement training with a 
robotic exoskeleton called Pneu-WREX. This pneumatic robot allows 
motion of the arm in four degrees-of-freedom (DOF).  The robot allows 
the hand to reach a wide range of points in 3D space, but with the 
forearm always horizontal. The device allows a small amount of 
shoulder translation forward and backward. 

C. Experimental Protocol 
The University of California Institutional Review Board 

approved all experiments and the subjects provided 
informed consent. We tested how eight chronic (> 6 months 
after stroke) interacted with the adaptive controller with and 
without the slacking term). For these experiments, the 
proportional gain of the robot arm, kp, was set to 70 N/m.  

  In one experiment we asked the subjects to follow a 
minimum jerk trajectory with a peak velocity of 0.12 m/sec 
from a central home position to seven targets spaced across 
a frontal plane in front of the subject.  In another 
experiment, we instructed the subjects to try to follow a 
target cursor on a computer display by controlling a second 
cursor which represented the endpoint of the orthosis.  The 
target cursor moved back and forth between two targets 
along a minimum jerk trajectory (also with peak velocity of 
0.12 m/sec). The targets were spaced 30 cm apart in the 
horizontal plane at chest level approximately 45 cm in front 
of the body.   

IV. RESULTS 

A. The compliant robot successfully assisted in reaching 
Figure 2 shows that the robot controller learned to assist 

patients with a range of severity of motor impairment in 
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reaching to the 7 targets that were placed in different areas 
of the workspace, even when the targets were not reachable 
without robotic assistance. The reaching trajectories 
exhibited substantial variability because the robot was 
mechanically compliant.  

Figure 2 also displays the mean magnitude of the assistive 
force provided by the robot as a horizontal bar, with 
slacking (the slacking time constant τ = 1/fr was 10 s) and 
without slacking (τ = ∞) incorporated into the controller. 
The reaching trajectories were similar with and without 
slacking, but the assistive force provided by the robot was 
smaller with robot slacking, consistent with Model 
Prediction 1. 

B. Load sharing depended on robot slacking 
To quantify the load sharing more precisely, we asked the 

subjects to raise their arms and then move between two 
targets at shoulder height, spaced 30 cm apart in the frontal 
plane. Figure 3 illustrates the mean of the vertical robot 
assistance force and the vertical tracking error after 20 back-
and-forth movements as a function of the impairment 
severity of the subject.  When the robot controller did not 
contain a slacking term (i.e. τ = ∞), the mean tracking error 
was small, but the robot eventually lifted 100% of the 
weight of the arm, even though the robot assistance force 
was initialized to zero.  With a slacking term (τ = 10 s), the 
robot lifted significantly less of the weight of the arm 
(paired t-test, p < 0.01).  The robot contribution to the load 
sharing increased with increasing impairment severity, as 
would be expected since more severely impaired patients 
had less strength to lift their arms. Tracking errors also 

increased when the robot incorporated slacking, but were 
still relatively small (less than 2 cm). This experiment 
confirmed Model Prediction 1 – i.e. that the robot will take 
over the lifting task if the robot does not incorporate 
slacking, as well as Model Prediction 2 – i.e. that 
incorporating robot slacking will cause the patient to lift 
significantly more of the load while keeping error small. 

C. Validity of the slacking-model of human motor control 
We tested how well the model of human motor control 

defined by Equation 2 fit the experimental data in the steady 
state for two subjects.  We asked the subjects to perform the 
two-target tracking task as we varied the robotic slacking 
time constant (i.e. τ = 1/fr) through a wide range. The steady 
state tracking error and assistance force varied as the robot 
slacking factor varied. The two were linearly related, as 
predicted by Eq. 3 (subject 1: Fugl-Meyer score = 53, r2 = 
0.84, p < 0.001; subject 2: Fugl-Meyer score = 31, r2 = 0.53, 
p = 0.06).  The slope of the line was gh/fh = 4300 N/m for 
subject 1, and 6244 N/m for subject 2. 

V. DISCUSSION AND CONCLUSION 
This paper presents a computational model of how 

humans interact with a robotic therapy device for the task of 
lifting a load to a desired height. The model includes terms 
that model human limb stiffness, adaptive formation of an 
internal model (implemented simply with an integral control 
term), and a slacking process in which the motor control 
system attempts to reduce its effort when error is small. The 
model predicts that the human will relinquish performance 
of the lifting task to an adaptive robot if the human 

 
Figure 2: Reaching trajectories in the frontal plane, viewed from behind the subject, with and without robot assistance.  Each column 
represents a different, left hemi-paretic subject reaching with the left arm.  The first row shows the reaching trajectory without robot 
assistance.  The second row shows the reaching trajectory with robot assistance, when the robot assistant incorporated a slacking time constant 
τ = 1/fr of 10 seconds.  The third row shows the reaching trajectory when the robot did not incorporate a slacking time constant (i. e. fr = 0).  
The horizontal bars in the bottom two rows show the mean magnitude of the force the robot applied over time in order to assist the subjects in 
reaching.  The robot helped the patients to reach the targets with less force when it incorporated slacking. 
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controller contains a slacking term but the robot does not. 
Experimental  

 
Figure 3: Mean robot assistance force and vertical tracking error 
measured while eight stroke subjects performed a tracking task with 
the arm.  Means were taken following 20 back and forth movements by 
the subjects with the robot assisting. The robot assistance was 
initialized to zero on the first movement. A Fugl-Meyer score of 0 
corresponds to complete paralysis, while a score of 66 corresponds to 
normal movement ability.  Note that the robot lifted 100% of the arm 
weight if its controller did not contain a slacking factor (x), and assisted 
less when its controller included a slacking factor (o).  
data from individuals with a chronic stroke confirmed this 
prediction. Incorporating a slacking term into the robot 
overcame this problem, as predicted by the model, 
increasing load sharing by the subjects while keeping errors 
small.  

These results provide a computational basis for 
optimizing robotic therapy in accordance with the 
assistance-as-needed hypothesis.  On the modeling side, 
future work will examine how well the transient response 
predicted by the model fits experimental data.  On the 
clinical testing side, we plan on rigorously testing the 
assistance-as-needed hypothesis by training one group of 
patients with a robot slacking factor, and one group without 
it.  

   Previous robotic therapy devices have typically used 
position feedback control with a moderate stiffness to assist 
patients in moving their limbs. The model presented here 
predicts that the patient will stay actively involved in such a 
situation, but with somewhat reduced participation. The 
participation will be greater if the robot stiffness is small 
compared to the parameter gh/fh (i.e. Model Prediction 3), 
however, decreasing kr limits the robot’s ability to help the 
patient complete desired movements.  We found gh/fh to be 
large (> 4000 N/m) for two stroke subjects. Israel et al. [17] 
recently found that people with a spinal cord injury who 
walked in a position-controlled Lokomat robotic gait 
orthosis with the instruction to “follow along” used about 
60% less energy (measured by oxygen consumption) than 
when they were manually assisted by therapists, consistent 
with the prediction of the model presented here. Given gh/fh, 
the model predicts the proportion of load the human will 

carry as a function of the robot stiffness, and thus is 
experimentally falsifiable.  

We conclude with the following observation: if the desire 
is to keep the robot very compliant, the mean tracking errors 
small, and the patient involved, then incorporating a 
slacking term into a compliant robot controller that 
adaptively forms a real-time model of the patient’s weakness 
is an effective way to achieve these goals. 
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