
Recent Advances on the Algorithmic
Optimization of Robot Motion

James E. Bobrow, Frank C. Park, and Athanasios Sideris

Department of Mechanical and Aerospace Engineering
University of California, Irvine
Irvine, CA 92697
{jebobrow, asideris}@uci.edu

Summary. An important technique for computing motions for robot systems is to
conduct a numerical search for a trajectory that minimizes a physical criteria like en-
ergy, control effort, jerk, or time. In this paper, we provide example solutions of these
types of optimal control problems, and develop a framework to solve these problems
reliably. Our approach uses an efficient solver for both inverse and forward dynamics
along with the sensitivity of these quantities used to compute gradients, and a reli-
able optimal control solver. We give an overview of our algorithms for these elements
in this paper. The optimal control solver has been the primary focus of our recent
work. This algorithm creates optimal motions in a numerically stable and efficient
manner. Similar to sequential quadratic programming for solving finite-dimensional
optimization problems, our approach solves the infinite-dimensional problem using
a sequence of linear-quadratic optimal control subproblems. Each subproblem is
solved efficiently and reliably using the Riccati differential equation.

1 Introduction

For many biological systems, it has long been observed that motion generation
can likely be the result of a minimization process. The objective function used has
been characterized by a physical criteria like energy, control effort, jerk, or time.
Unfortunately, to date the algorithms that generate such optimal motions have been
successfully used on only the simplest of robots. The need for such an algorithm
is increasing dramatically since many new walking, crawling, hopping machines,
rehabilitation devices, and free-flying air and space systems are currently under
development. All of these devices will benefit from a numerically stable and efficient
algorithm that produces optimal movements for them.

We are interested in obtaining solutions to optimal control problems for systems
of the form

ẋ = f(x(t), u(t)), (1)

where f : Rn × Rm → Rn ∈ C1 (continuously differentiable) and x(0) = xo. We
assume that the optimal control cost functional has the form

2 James E. Bobrow, Frank C. Park, and Athanasios Sideris

2

q

q

1

2

l = 0.5

l = 1.0

1

y

m

 yp

Fig. 1. The left-hand system was used for Case 1, a fully actuated robot. Case 2 is
the same system, but with the base joint unactuated. The center system represents
Case 3, which is an application to human step rehabilitation. The right system is a
hopping machine for Case 4.

Minimize
u(t)

J(u(t)) = φ(x(tf)) +

∫ tf

0

L(x(t), u(t), t) dt, (2)

subject to (1) with φ : Rn → R ∈ C1 and L : Rn×Rm×R→ R ∈ C1. Although the
Maximum Principle [3] provides the optimality conditions for the solution to (2),
it is not suitable for numerical computation. Because of the importance in solving
these problems, many numerical algorithms and commercial software packages have
been developed to solve them since the 1960’s [1]. Most of the existing algorithms do
not have adequate numerical stability properties and are too slow computationally
to solve optimal control problems for current multibody systems. As a means to
discuss the numerical features of algorithms, we provide example solutions in four
case studies. These examples demonstrate the strength and limitations of current
numerical algorithms.

Figure 1 shows model systems used for four case studies in this paper. Case 1 is
a minimum effort control of a fully actuated robot. We have found that with care
in the choice of basis functions, direct methods can be tailored to adequately solve
this problem. Case 2 is an underactuated robot. We have found that even with exact
gradients of the dynamics, direct methods have numerical problems from round-off
errors during the simulation of the motion. Case 3 is an application to human leg step
rehabilitation [21]. We experienced even more numerical problems for this problem
due to the added ground constraint. Finally, Case 4 is a simplified gas actuated
hopping machine. We found it difficult to achieve stable convergence with existing
methods for this case. The cause was numerical integration errors introduced at the
sudden change in the dynamics between the stance phase and the flight phase, and
the fact that the times for the switch from stance to flight were not known apriori.
The approach developed in this paper (see also [14]) efficiently solves Case 4 , and
we feel that it has great potential for application to general optimal control problems
for robot systems.

Recent Advances on the Algorithmic Optimization of Robot Motion 3

1.1 First order necessary conditions for the solution of the optimal
control problem

In order to discuss the solution to Cases 1-4, we first briefly summarize the first
order necessary conditions for the optimal control of a general nonlinear system (see
[3] for more details). First define the Hamiltonian as

H(x, u, λ, t) ≡ L(x, u, t) + λT f(x, u), (3)

where L and f were defined in (1) and (2). Then in (3), λ(t) is chosen to satisfy the
costate or adjoint equations

λ̇ = −Hx(xo(t), uo(t), λ(t), t), (4)

where Hx and Hu (used below) denote partial derivatives of H with respect to x
and u respectively, and the boundary conditions are

λ(tf) = φT
x (xo(tf)).

Let uo(t) be a nominal control, xo(t) and λo(t) be the corresponding solutions to (1)
and (4), respectively. For general problems, the first order necessary conditions for
a local minimum of J require that H(xo(t), uo(t), λ(t), t) be minimized with respect
to uo(t) subject to any constraints on it. For unconstrained controls u, the condition
on H is

Hu(xo(t), uo(t), λ(t), t) = 0.

Note that both Hx and Hu require differentiation of the state equations (1)
with respect to x and u and evaluation of these derivatives along the solution
(xo(t), uo(t)). For multibody dynamic systems with more than a few degrees of
freedom, the derivatives are generally not available due to the complexity of the
equations of motion. However, in [15], the sensitivity algorithms based on matrix
exponentials are developed specifically for this purpose. A brief introduction to that
work is presented next.

1.2 Geometric Tools for Multibody Systems Analysis

To represent robot systems and their dynamics, we use a set of analytical tools for
multibody systems analysis based on the mathematics of Lie groups and Lie algebras
[13, 11]. In the traditional formulation, a rigid motion can be represented with the
Denavit-Hartenberg parameters as a 4x4 homogeneous transformation T (θ, d) ∈
SE(3), where θ is the rotation about the z-axis and d is the translation along it.
For a prismatic joint, d varies while θ is held constant. For a revolute joint, θ varies
while d is held constant. With the geometric formulation, for either type of joint the
transformation has the form

T (θ, d) = eAxM,

where x = θ for a revolute joint or x = d for a prismatic joint, A contains the
joint axis or direction, and M is a constant (M = T (0, d) for a revolute joint,
M = T (θ, 0) for a prismatic joint.) This exponential mapping and its inverse have
explicit formulas: exp : se(3) → SE(3) and its inverse log : SE(3) → se(3) [13];
here se(3) denotes the Lie algebra of SE(3). Although SE(3) is not a vector space,

4 James E. Bobrow, Frank C. Park, and Athanasios Sideris

• Initialization
V0 = V̇0 = Wn+1 = 0

• Forward recursion: for i = 1 to n do

Ti−1,i = Mie
Siqi

Vi = Ad
T−1

i−1,i
(Vi−1) + Siq̇i

V̇i = Siq̈i + Ad
T−1

i−1,i
(V̇i−1) +

[
Ad

T−1
i−1,i

(Vi−1), Siq̇i

]

• Backward recursion: for i = n to 1 do

Wi = Ad∗
T−1

i,i+1
(Wi+1) + JiV̇i − ad∗Vi

(JiVi)

τi = ST
i Wi

Fig. 2. The POE recursive Newton-Euler inverse dynamics algorithm.

se(3) is: the log formula provides a set of canonical coordinates for representing
neighborhoods of SE(3) as open sets in a vector space.

The derivative of the exponential map with respect to the joint displacement x is
just dT

dx
= AeAxM. In the coding of multibody dynamics algorithms, the exponential

is the lowest level primitive required for all computations. One never needs to deal
with sine and cosine terms or with making a distinction for each joint type.

The use of matrix exponentials to represent the link to link transformations for
robot systems allows one to clarify the kinematic and dynamic equations. In the
case of open chains containing prismatic or revolute joints, the forward kinematics
can be written as a product of matrix exponentials [2]. Specifically, given a choice
of inertial and tool reference frames, and a zero position for the mechanism, the
forward kinematics can be written uniquely as

T0n(q1, . . . , qn) = eA1q1 · · · eAnqn

where q1, . . . , qn are joint variables, and A1, . . . , An ∈ se(3). The kinematics of closed
chains can be obtained by further adding a set of algebraic constraints.

In order to determine optimal motions for the multibody systems of interest, a
complete dynamic model is needed. In [13] a Lie group formulation of the dynam-
ics has been developed, in which closed-form expressions for the inertia matrix and
Coriolis terms are available. Using this representation, the forward and inverse dy-
namics can also be computed efficiently with O(n) recursive algorithms. The inverse
dynamics algorithm is shown in Figure 2. In this algorithm, Vi ∈ se(3) is the linear
and angular velocity of link i, W is the applied force and moment, J is a 6x6 matrix
of mass and inertia, Si is the joint screw, and Ad and ad are standard operators
from differential geometry [11]. A useful computational feature of this algorithm is
that no distinction needs to be made for revolute or prismatic joints. In [15], this
algorithm was extended to forward and inverse dynamics of partially actuated sys-
tems, and to produce the derivatives needed for many optimal control solvers, as
discussed in the previous section.

Given the ability to compute the dynamics and derivatives of relatively complex
systems, we now discuss some representative examples. The following case studies

Recent Advances on the Algorithmic Optimization of Robot Motion 5

demonstrate both successes and difficulties that we have encountered in applying
the optimality conditions of Section 1.1 to multibody systems problems.

2 Some representative case studies

2.1 Case 1: Fully Actuated Robot

Consider the case of finding the minimum effort control which moves the two link
planar robot shown in Figure 1 from an outstretched horizontal position to a vertical
position. Assume that both joints of the arm be actuated, and let the cost function
be:

J = c1||q(tf)− qd||2 + c2||q̇(tf)||2 +
1

2

∫ tf

0

||u||2dt, (5)

where q ∈ R2 are the joint angles, qd = [π
2
, 0]T , are the desired final joint positions

in radians, u ∈ R2 are the corresponding joint torques, and c1 = c2 = 100 reflects
the desire to reach the final vertical configuration with little error.

We used several approaches to solve this optimal control problem. The most
straight forward approach, called the “shooting method,” is to cleverly find the
initial costate, λ(0), such that when the state and costate equations are integrated
forward from t = 0 to t = tf with Hu = 0, the proper final condition on the costate is
satisfied (λ(tf) = φT

x (xo(tf)). Unfortunately, because the costate equations are not
stable and highly sensitive to the initial conditions [3], the shooting method failed
when applied to this problem. A second, more successful, approach used by several
researchers [5, 4, 10, 12] in robotics is to approximate the motion of the joints using
basis functions such as splines or a truncated Fourier Series. For instance, we used
quintic B-spline polynomials with 12 uniformly spaced knot intervals to parameterize
our solution as q = q(t, P) with P ∈ R2 × R12 being the amplitude of the spline
basis functions. For any choice of P, we can compute the required control u(t) by
differentiating q(t, P) with respect to time to obtain q̇ and q̈ and, evaluating the
equations of motion

M(q)q̈ + h(q̇, q) = u. (6)

In order to use this “direct approach,” we guessed an initial motion that kept the
second link aligned with the first with q2(t) = 0, and moved the first link smoothly
from q1(0) = 0 to q1(tf) = π/2, with tf = 2 seconds. We then computed J(u(P))
in (5) and its gradient ∇JP using adaptive Simpson quadrature. In this case, the
integrand is known explicitly throughout the integral since all the terms in (6) are
known explicitly in terms of P from the joint angles q = q(t, P). Given J(P) and its
gradient, we could easily minimize it over P using Matlab’s BFGS [9] algorithm in
the function “fminunc.”

Figure 3 shows the locally optimal solution found to this problem using the
parameter optimization approach mentioned above. The frames are spaced at equal
intervals in time, with tf = 2 seconds. At first the robot allows gravity to take over
and it swings down while folding up the second link. It then swings the first joint
into the upward posture. A small pumping motion is applied to the second link in
order to move it into the vertical posture. The initial value of the effort term in the
cost function was 73.6 and the final value was 9.9. The computation time for this
problem was about 2 minutes on a PIII-800 PC.

6 James E. Bobrow, Frank C. Park, and Athanasios Sideris

Fig. 3. Final path for fully-actuated planar 2R problem.

We have used this basic approach with our dynamics tools to solve a weight-
lifting problem for a much more complex Puma 762 robot in [20], where we tripled
the payload above the manufacturers specifications. Even though the solution to the
above problem was fairly stable numerically, we still needed to choose an appropriate
set of basis functions in order to approximate the numerical solution. In this paper,
we develop an approach that does not use any basis functions to approximate the
solution.

2.2 Case 2: Underactuated Robot

The optimal control problem becomes less numerically stable and more difficult to
solve when the system is underactuated. For instance, suppose the motor attached
to the first joint of the above 2R robot is disconnected. The system then only has
a motor at its elbow and is often called the Acrobot, which has been studied by
Spong [17] and others. Consider the swing-up motion problem where the system
starts from a hanging downward posture and the optimal control problem is to find
an open-loop control torque for the elbow, if one exists, that drives the system to
the upward posture of the previous example. This case is much more challenging
than the previous one because we can no longer use (6) to compute u(P) because
the system is underactuated.

Choose the same objective function as (5), except the control u is now a scalar.
One way to approach the problem is approximate the control with a set of basis
functions and integrate the 4 state equations in order to evaluate (5). Any gradient-
based numerical optimization will need the both the value of J(P) and its gradient
∇pJ . Assuming that the state, costate, and boundary conditions are satisfied, the
required derivative is

dJ

dpi
=

∫ tf

0

Hu(xo(t), uo(t), λ(t), t)
du

dpi
dt. (7)

This derivative is valid for any (xo(t), uo(t)) even if they are not optimal [3]. Then,
in order to evaluate the objective function and its gradient for use in any gradient-
based nonlinear optimization algorithm, the following steps must be performed:

Recent Advances on the Algorithmic Optimization of Robot Motion 7

• Select a set of basis functions and parameters to define uo(t, P).
• Integrate the differential equations (1) of motion from 0 to tf to obtain xo(t)

and J(P).
• Evaluate the the costate (4) boundary conditions λ(tf) = φT

x (xo(tf)) and inte-
grate the costate equations backwards in time from tf to 0 to obtain λ(t).

• Evaluate the gradient of J using (7)

We used this method to solve the Acrobot swing-up problem with one modifica-
tion. That is, instead of viewing the control u2 as the torque at joint 2, we defined
the motion of joint q2 with our spline functions and considered that to be the control
in (1). In doing so, the actual joint torque u2(t) can be computed algebraically from
(6) assuming that (q, q̇) are known. The advantage of doing this is that the state
reduces to 2 dimensions in this case x = [q1, q̇1]

T since the motion of the second
joint is known from the parameterization.

Note that it is not apparent what, if any, elbow motion will drive the system to
the desired final configuration. Our initial guess for the elbow motion was very poor.
We did not move the elbow joint at all during the motion, and let the system move
like a rigid pendulum would with an initial condition q1(0) = −1.0, q̇(0) = q2(0) =
q̇2(0) = 0.0. Figure 4 shows the final motion obtained using Matlab’s nonlinear
parameter optimization with gradients computed as described above. The motion
produced is similar to those proposed by Spong [17], in which the lower link pumps
energy into the system and this energy causes the first link to move into the vertical
position. In addition to this example, we have used this basic approach to solve for
much more complex optimal high-dive motions for a human-like diver in [16].

Fig. 4. Optimal swing up motion for an Acrobot with q1(0) = −1.0.

When we computed the above solution to the underactuated Acrobot, we did
not expect numerical difficulties, since we had the exact gradient of the objective
function and the optimization algorithm has well-established convergence properties
for this case [9]. However, we did encounter some numerical problems and had to
adjust some of the tolerances in the optimizer in order to achieve convergence, and
the computation time, even in the best of cases (about 5 minutes on a PIII-800
PC), was much longer than in the previous example. The problem was that the
round-off errors encountered during the numerical solution of (1), (4), and (7) lead

8 James E. Bobrow, Frank C. Park, and Athanasios Sideris

to large relative errors in the gradient when the algorithm is near convergence. The
algorithm developed in this paper alleviates these difficulties.

2.3 Case 3: Underactuated systems with contact constraints-
Human step training example

One important application of our proposed algorithm is the generation of optimal
inputs for the robotic rehabilitation of paralyzed individuals [22]. In [21] we examined
a method to control the stepping motion of a paralyzed person suspended over
a treadmill (see Fig. 1) using a robot attached to the pelvis. Leg swing motion
was created by moving the pelvis without contact with the legs. The problem is
formulated as an optimal control problem for an underactuated articulated chain.
Similar to the underactuated Acrobot, the optimal control problem is converted into
a discrete parameter optimization and a gradient-based algorithm is used to solve
it.

To simulate a paralyzed person, a dynamic model for a branched kinematic
chain was used approximate the kinematics and dynamics of a human subject. For
the swing hip, knee and ankle joints, a torque was applied to simulate the stiffness
of passive tissue, but no torque from the muscles since the person is assumed to
be paralyzed. A total of 32 B-spline parameters were used in the optimization to
specify the motion of the swing hip. This problem differed from the Acrobot because
we had to constrain the motion of the foot to avoid contact with the ground, and
the motion of the legs to avoid contact with each other. We used penalty functions
to enforce these collision avoidance constraints.

−100 −50 0 50 100

−10
0

10
20

x (cm)

z
(c

m
)

−100 −50 0 50 100

0

20

40

60

80

100

120

x (cm)

y
(c

m
)

−1001020

0

20

40

60

80

100

120

z (cm)

y
(c

m
)

Fig. 5. Motion of the pelvis can be used to create motion for a paralyzed swing leg.
The solid lines show gait which results from optimal motion of the pelvis, and the
dashed lines are the gait recorded from the motion capture system.

In the optimization results shown in Figure 5, we found the motion of the swing
hip that produced a step for the swing leg that was as close as possible to a normal

Recent Advances on the Algorithmic Optimization of Robot Motion 9

human gait. The optimal control found from our algorithm lifted the swing hip to
avoid collision between the swing leg and the ground. At the same time, it twisted
the pelvis to pump energy into the paralyzed leg and moved the leg close to the
desired final configuration, while avoiding collision between the legs. Thus we found
a strategy that could achieve repetitive stepping by shifting the pelvis alone. The
optimized, pelvic motion strategies are comparable to “hip-hiking” gait strategies
used by people with lower limb prostheses or hemiparesis.

Even though there were relatively few parameters (32) in the optimization, it was
not numerically stable and took approximately 4 hours to converge. The problems
were again due to round-off errors introduced by the computation of the gradient in
(7). The penalty functions for obstacle avoidance exacerbated the problem since they
effectively created a “stiff” system of differential equations. The above results only
considered the swing phase of the gait cycle. In our initial attempts to combine the
stance phase with the swing phase in the optimal control solution were numerically
unstable and did not converge to a solution.

Based on our initial results from the simple hopping machine considered in Case
4, we believe that with our new algorithm it will be possible to combine the stance
and swing phases and reliably compute an optimal motion for Case 3 in just a few
minutes of computation time. This would make it possible to compute an optimal
motion for each patient in a clinical setting.

2.4 Case 4: Minimum Fuel Hopping

In order to explore the difficulties associated with the change in dynamics between
the stance phase and swing phase of motion mentioned in Case 3, we considered a
simple one-dimensional hopping system shown in Figure 1. This system is driven by
a pneumatic actuator, with the location of the piston relative to the mass under no
external loading defined as yp. After contact occurs with the ground with y ≤ yp, the
upward force on the mass from actuator can be approximated by a linear spring with
F = k(yp− y), where k is the spring constant. The position yp can be viewed as the
unstretched spring length and it can be easily changed by pumping air into or out of
either side of the cylinder. The equations of motion for the mass are mÿ = F (y, yp)−
mg, where mg is the force due to gravity, and F (y, yp) =

{
0 y > yp

k(yp − y) otherwise.
Note that in this case F (y, yp) is not differentiable at y = yp, and gradient-based
methods will have difficulties with this. However, the discontinuity in the derivative
can easily be smoothed. For instance, let the spring compression be e = yp − y and
choose an α > 0, then

F (e) =

0 0 > e
k
2α

e2 0 ≤ e < α
ke− kα

2
otherwise

is C1. The final equation of motion for this system relates the air flow into the
cylinder, which is the control u(t), to the equilibrium position yp of the piston.
Assume for the following that the equation ẏp = u approximates this relationship.

When the hopping machine begins its operation, we are interested in starting
from rest, and reaching a desired hop height yo

N at time tf . If we minimize

J(u) =
1

2
qfin(y(N)− yo

N)2 + ẏ(N)2 +
tf

2N

N−1∑
n=0

[
q yp(n)2 + r u(n)2

]
, (8)

10 James E. Bobrow, Frank C. Park, and Athanasios Sideris

the terms outside the summation reflect the desire to reach the height at time tf

with zero velocity, and the terms inside the summation reflect the desire to minimize
the gas used to achieve this. The weighting on yp is used to keep the piston motion
within its bounds. We first attempted to solve this problem by parameterizing the
control u(t) with B-splines and using the basic steps used in Cases 2 and 3. Even
after considerable tweaking of tolerances, the gradient-based algorithm would not
converge. This drove us to develop the algorithm described in the next section.

3 Problem Formulation and Background Results

We assume that the dynamic system defined by (1) and the performance measure (2)
have been descretized by a suitable numerical integration scheme. To simplify the
notation, we use the same function and variable names for the discrete-time versions
of the continuous-time variables. A more detailed discussion of this material can be
found in [14].

Minimize
u(n), x(n)

J = φ(x(N)) +

N−1∑
n=0

L(x(n), u(n), n) (9)

subject to x(n + 1) = f(x(n), u(n)); x(0) = x0 (10)

We further assume a quadratic performance index, namely:

L(x(n), u(n), n) =
1

2
[x(n)− xo(n)]T Q(n)[x(n)− xo(n)] +

[u(n)− uo(n)]T R(n)[u(n)− uo(n)] (11)

and

φ(x) =
1

2
[x− xo(N)]T Q(N)[x− xo(N)] (12)

In (11) and (12), uo(n), xo(n), n = 1, . . . N are given control input and state
offset sequences. In standard optimal regulator control problem formulations,
uo(n), xo(n) are usually taken to be zero with the exception perhaps of xo(N),
the desired final value for the state. The formulation considered here addresses
the more general optimal tracking control problem and is required for the
linear quadratic step in the proposed algorithm presented in Section 3.2.

3.1 First Order Optimality Conditions

We next briefly review the first order optimality conditions for the optimal
control problem of (9) and (10), in a manner that brings out certain important
interpretations of the adjoint dynamical equations encountered in a control
theoretic approach and Lagrange Multipliers found in a pure optimization
theory approach such as that mentioned in Section 1.1.

Let us consider the cost-to-go:

Recent Advances on the Algorithmic Optimization of Robot Motion 11

J(n) ≡
N−1∑

n=k

L(x(k), u(k), k) + φ(x(N)) (13)

with L and φ as defined in (11) and (12) respectively. We remark that J(n)
is a function of x(n), and u(k), k = n, . . . , N − 1 and introduce the sensitivity
of the cost to go with respect to the current state:

λT (n) =
∂J(n)
∂x(n)

(14)

Since
J(n) = L(x(n), u(n), n) + J(n + 1), (15)

we have the recursion:

λT (n) = Lx(x(n), u(n), n) + λT (n + 1)fx(x(n), u(n))

= [x(n)− xo(n)]T Q(n) + λT (n + 1)fx(x(n), u(n)) (16)

by using (11) and where Lx and fx denote the partials of L and f respectively
with respect to the state variables. The previous recursion can be solved back-
ward in time (n = N − 1, . . . , 0) given the control and state trajectories and
it can be started with the final value:

λT (N) =
∂L(N)
∂x(N)

= [x(N)− xo(N)]T Q(N) (17)

derived from (12). We now compute the sensitivity of J(n) with respect to
the current control u(n). Clearly from (15),

∂J(n)

∂u(n)
= Lu(x(n), u(n), n) + λT (n + 1)fu(x(n), u(n))

= [u(n)− uo(n)]T R(n) + (18)

λT (n + 1)fu(x(n), u(n))

since
∂J(n+1)

∂u(n) = ∂J(n+1)
∂x(n+1) · ∂x(n+1)

∂u(n) = λT (n + 1)fu(x(n), u(n)). In (19) Lu and fu

denote the partials of L and f respectively with respect to the control variables
and (11) is used.

Next note that ∂J
∂u(n) = ∂J(n)

∂u(n) since the first n terms in J do not depend
on u(n). We have then obtained the gradient of the cost with respect to the
control variables, namely:

∇uJ =
[
∂J(0)
∂u(0)

∂J(1)
∂u(1)

. . .
∂J(N − 1)
∂u(N − 1)

]
. (19)

Assuming u is unconstrained, the first order optimality conditions require that

∇uJ = 0. (20)

12 James E. Bobrow, Frank C. Park, and Athanasios Sideris

We remark that by considering the Hamiltonian

H(x, u, λ, n) ≡ L(x, u, n) + λT f(x, u), (21)

we have that Hu(x(n), u(n), λ(n+1), n) ≡ ∂J
∂u(n) , i.e. we uncover the generally

known but frequently overlooked fact that the partial of the Hamiltonian
with respect to the control variables u is the gradient of the cost function
with respect to u. We emphasize here that in our approach for solving the
optimal control problem, we take the viewpoint of the control variables u(n)
being the independent variables of the problem since the dynamical equations
express (recursively) the state variables in terms of the controls and thus can
be eliminated from the cost function. Thus in taking the partials of J with
respect to u, J is considered as a function u(n), n = 0, . . . , N − 1 alone,
assuming that x(0) is given. With this perspective, the problem becomes one
of unconstrained minimization, and having computed ∇uJ , Steepest Descent,
Quasi-Newton, and other first derivative methods can be brought to bear
to solve it. However, due to the large-scale character of the problem, only
methods that take advantage of the special structure of the problem become
viable. The Linear Quadratic Regulator algorithm is such an approach in case
of linear dynamics. We review it next and we remark that it corresponds to
taking a Newton step in view of the previous discussion.

3.2 Linear Quadratic Tracking Problem

We next consider the case of linear dynamics in the optimal control problem of
(9) and (10). In the following, we distinguish all variables corresponding to the
linear optimal control problem that may have different values in the nonlinear
optimal control problem by using an over-bar. When the cost is quadratic
as in (11) we have the well-known Linear Quadratic Tracking problem. The
control theoretic approach to this problem is based on solving the first order
necessary optimality conditions (also sufficient in this case) in an efficient
manner by introducing the Riccati equation. We briefly elaborate on this
derivation next, for completeness and also since most references assume that
the offset sequences xo(n) and uo(n) are zero. First, we summarize the first
order necessary optimality conditions for this problem.

x̄(n + 1) = A(n)x̄(n) + B(n)ū(n) (22)

λ̄T (n) = [x̄(n)− x̄o(n)]T Q(n) + (23)

λ̄T (n + 1)A(n)

∂J̄(n)/∂ū(n) = [ū(n)− ūo(n)]T R(n) + (24)

λ̄T (n + 1)B(n) = 0

Note that the system dynamical equations (22) run forward in time n =
0, . . . , N − 1 with initial conditions x̄(0) = x̄0 given, while the adjoint dy-
namical equations (24) run backward in time, n = N − 1, . . . , 0 with final
conditions λ̄T (N) = [x̄(N)− x̄o(N)]T Q(N). From (25), we obtain

Recent Advances on the Algorithmic Optimization of Robot Motion 13

ū(n) = ūo(n)−R(n)−1B(n)T λ̄(n + 1) (25)

and by substituting in (22) and (24), we obtain the classical two-point bound-
ary system but with additional forcing terms due to the x̄o(n) and ūo(n)
sequences.

x̄(n + 1) = A(n)x̄(n)−B(n)R(n)−1B(n)T λ̄(n + 1) (26)

+B(n)ūo(n)

λ̄T (n) = Q(n)x̄(n) + AT (n)λ̄(n + 1)−Q(n)x̄o(n) (27)

The system of (27) and (27) can be solved by the sweep method [3], based
on the postulated relation

λ̄(n) = P (n)x̄(n) + s(n) (28)

where P (n) and s(n) are appropriate matrices that can be found as follows.
For n = N , (28) holds with

P (N) = Q(N), s(N) = −Q(N)x̄o(N). (29)

We now substitute (28) in (27) and after some algebra we obtain

x̄(n + 1) = M(n)A(n)x̄(n) + v(n) (30)

where we defined

M(n) =
[
I + B(n)R(n)−1B(n)T P (n + 1)

]−1

(31)

v(n) = M(n)B(n)[ūo(n)−R(n)−1B(n)T s(n + 1)] (32)

By replacing λ̄(n) and λ̄(n + 1) in (27) in terms of x̄(n) and x̄(n + 1) from
(28), we obtain

P (n)x̄(n) + s(n) = Q(n)x̄(n) + AT (n) [P (n + 1)x̄(n + 1)

+s(n + 1)]−Q(n)x̄o(n),

and by expressing x̄(n + 1) from (30) and (32) above, we get

P (n)x̄(n) + s(n) =

Q(n)x̄(n) + AT (n)P (n + 1)M(n)A(n)x̄(n)

−AT (n)P (n + 1)M(n)B(n)R(n)−1B(n)T s(n + 1)

+AT (n)P (n + 1)M(n)B(n)ūo(n)

+AT (n)s(n + 1)−Q(n)x̄o(n)

The above equation is satisfied by taking

P (n) = Q(n) + AT (n)P (n + 1)M(n)A(n) (33)

s(n) = AT (n)[I − P (n + 1)M(n)B(n)R(n)−1B(n)T]s(n + 1)

+AT (n)P (n + 1)M(n)B(n)ūo(n)−Q(n)x̄o(n) (34)

14 James E. Bobrow, Frank C. Park, and Athanasios Sideris

Equation (33) is the well-known Riccati difference equation and together with
the auxiliary equation (34), which is unnecessary if x̄o(n) and ūo(n) are zero,
are solved backward in time (n = N − 1, . . . , 1), with final values given by
(29) and together with (31) and (32). The resulting values P (n) and s(n) are
stored and used to solve forward in time (n = 0, . . . , N −1), (30) and (25) for
the optimal control and state trajectories. These equations are summarized
in Table 1.

1. Solve backward (n = N − 1, . . . , 0) with PN ≡ QN and sN ≡ −QN x̄o
N :

M(n) =
[
I + B(n)R(n)−1B(n)T P (n + 1)

]−1

P (n) = Q(n) + A(n)T P (n + 1)M(n)A(n)

s(n) = A(n)T
[
I − P (n + 1)M(n)B(n)R(n)−1B(n)T

]
s(n + 1)

+A(n)T P (n + 1)M(n)B(n)ūo(n)−Q(n)x̄o(n)

2. Solve forward (n = 0, . . . , N − 1) with x̄(0) = x̄0:

v(n) = M(n)B(n)[ūo(n)−R(n)−1B(n)T s(n + 1)]

x̄(n + 1) = M(n)A(n)x̄(n) + v(n)

λ̄(n + 1) = P (n + 1)x̄(n + 1) + s(n + 1)

ū(n) = ūo(n)−R(n)−1B(n)T λ̄(n + 1)

Table 1. Algorithm to solve the Discrete-Time Finite-Horizon Linear
Quadratic Tracking optimal control problem

3.3 Formulation of the SLQ Algorithm

In the proposed SLQ algorithm, the control at stage k + 1 is found by per-
forming a one-dimensional search from the control at stage k and along a
search direction that is found by solving an Linear Quadratic (LQ) optimal
control problem. Specifically, let Uk = [u(0) u(1) . . . u(N − 1)] be the optimal
solution candidate at step k, and Xk = [x(1) x(2) . . . x(N)] the corresponding
state trajectory obtained by solving the dynamical equations (10) using Uk

and with the initial conditions x(0). We next linearize the state equations (10)
about the nominal trajectory of Uk and Xk. The linearized equations are

x̄(n + 1) = fx(x(n), u(n))x̄(n) + fu(x(n), u(n))ū(n) (35)

with initial conditions x̄(0) = 0. We then minimize the cost index (9) with re-
spect to ū(n). The solution of this LQ problem gives Ūk = [ū(0) ū(1) . . . ū(N−

Recent Advances on the Algorithmic Optimization of Robot Motion 15

1)], the proposed search direction. Thus, the control variables at stage k + 1
of the algorithm are obtained from

Uk+1 = Uk + αk · Ūk (36)

where αk ∈ R+ is appropriate stepsize the selection of which is discussed later
in the paper. Note again our perspective of considering the optimal control
problem as an unconstrained finite-dimensional optimization problem in U .

We emphasize that Ūk as computed above is not the steepest descent
direction. It is the solution to a linear quadratic tracking problem for a non-
linear system that has been linearized about Uk. Note that the objective
function is not linearized for this solution. Our algorithm is different than
standard Quasilinearization [3] and Neighboring Extremal[18] methods where
the adjoint equations are also linearized and two-point boundary problems
are solved.

3.4 Properties of the SQL Algorithm

In this section, we prove two important properties of the proposed algorithm.
First, we show that search direction Ū is a descent direction.

Theorem 1 Consider the discrete-time nonlinear optimal control problem of
(9) and (10), and assume a quadratic cost function as in (11) and (12) with
Q(n) = QT (n) ≥ 0, Q(N) = QT (N) ≥ 0 and R(n) = RT (n) > 0, n =
0, 1, . . . , N − 1. Also consider a control sequence U ≡ [u(0)T . . . uT (N − 1)]T

and the corresponding state trajectory X ≡ [x(1)T . . . xT (N)]T . Next, linearize
system (10) about U and X and solve the following linear quadratic problem:

Minimize
ū(n), x̄(n) J̄ =

1
2
[x̄T (N)− x̄o(N)]Q(N)[x̄(N) + x̄o(N)] +

1
2

N−1∑
n=0

{
[x̄(n)− x̄o(n)]T Q(n)[x̄(n)− x̄o(n)]

+ [ū(n)− ūo(n)]T R(n)[ū(n)− ūo(n)]
}

(37)
subj. to

x̄(n + 1) = fx(x(n), u(n))x̄(n) + (38)
fu(x(n), u(n))ū(n); x̄(0) = 0,

where x̄o(n) ≡ xo(n)−x(n), ūo(n) ≡ uo(n)−u(n). Then if Ū ≡ [ū(0)T . . . ūT (N−
1)]T is not zero, it is a descent direction for the cost function (9), i.e.
J(U + α · Ū) < J(U) for some α > 0.

Proof: We establish that Ū is a descent direction by showing that:

16 James E. Bobrow, Frank C. Park, and Athanasios Sideris

∇uJ · Ū =
N−1∑
n=0

∂J(n)
∂u(n)

ū(n) < 0, (39)

since ∇uJ in (19) is the gradient of the cost function with respect to the
control variables. Now, the components of ∇uJ are expressed in (19) in
terms of the adjoint variables λ(n) that satisfy recursion (16) with final
values given by (17). On the other hand, x̄(n) and ū(n) together with ad-
joint variables λ̄(n) satisfy the first order optimality conditions for the linear
quadratic problem given in (22), (24) and (25), where A(n) = fx(x(n), u(n))
and B(n) = fu(x(n), u(n)). Let us define

λ̃(n) = λ̄(n)− λ(n) (40)

and note from (16) and (24) that

λ̃(n)T = x̄(n)T Q(n) + λ̃(n + 1)T A(n); λ̃(N) = Q(N)x̄(N). (41)

Next through the indicated algebra, we can establish the following relation:

∂J(n)

∂u(n)
· ū(n) =

=
(
[u(n)− uo(n)]T R(n) + λ(n + 1)T B(n)

)
ū(n)

(using (19))

= −λ̃(n + 1)T B(n)ū(n)− ū(n)T R(n)ū(n)

(using (25))

= −λ̃(n + 1)T x̄(n + 1) + λ̃(n + 1)T A(n)x̄(n)− ū(n)T R(n)ū(n)

(using (39))

= −λ̃(n + 1)T x̄(n + 1) + λ̃(n)T x̄(n)− x̄(n)T Q(n)x̄(n)−
ū(n)T R(n)ū(n). (using (41))

Finally, summing up the above equation from n = 0 to n = N − 1 and noting
that x̄(0) = 0 and from (29) that λ̄(N) = Q(N)x̄(N), gives:

∇uJ · Ū =

N−1∑
n=0

∂J(n)

∂u(n)
· ū(n) (42)

= −
N−1∑
n=0

[x̄(n)T Q(n)x̄(n) + ū(n)T R(n)ū(n)]−

x̄T (N)Q(N)x̄(N) < 0

and the proof of the theorem is complete.

We remark that the search direction Ū can be found by the LQR algorithm
of Table 1 with A(n) = fx(x(n), u(n)) and B(n) = fu(x(n), u(n)).

The next result shows that the proposed SLQ algorithm does in fact con-
verge to a control locally minimizing the cost function (9).

Recent Advances on the Algorithmic Optimization of Robot Motion 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

M
as

s
an

d
P

is
to

n
po

si
tio

n,
 in

ch
es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−20

0

20

40

Time, seconds

M
in

im
um

 fu
el

 c
on

tr
ol

, u

Stance Phase Flight Phase Stance Phase Flight Phase

y(t) y
p
(t)

captionMaximum height hopping motion and minimum fuel control.

Theorem 2 Starting with an arbitrary control sequence U0, compute recur-
sively new controls:

Uk+1 = Uk + αk · Ūk (43)

where the direction Uk is obtained as in Theorem 1 by solving the LQR problem
of (37) and the linearized system (39) about the solution Uk and corresponding
state trajectory Xk; also αk is obtained by minimizing J [Uk+αŪk] over α > 0.
Then Uk converges (in the Euclidean norm sense) to a control that locally
minimizes the cost function (9) subject to the system equations (10).

Proof: See [14], or note that given the result of the previous theorem,
standard convergence proofs (see [19]) apply with either an exact or an inexact
linesearch such as the Armijo, Goldstein, or Wolfe search rules [9].

4 Numerical Example

We conducted numerical experiments the hopping system discussed in Case
4, above. We minimized (8) with the following parameters: k/m = 100,
g = 386.4, α = 0.1. We assumed that all states were initially zero, and that
the initial control sequence was zero. The cost function parameters were se-
lected as: tf = 1, q = 1000, r = 1.0. As in the last example, a simple Euler
approximation was used to discretize the equations, with N = 50.

As shown in Figure 4, the algorithm produced an alternating sequence of
stance phases and flight phases for the hopping system and it naturally iden-
tified the times to switch between these phases. If one were to use collocation
methods to solve this problem with explicit consideration of the different dy-
namics in the different phases, one would have to guess the number of switches
between phases and would need to treat the times at which the switch occurs

18 James E. Bobrow, Frank C. Park, and Athanasios Sideris

as variables in the optimization. We note that our algorithm converged much
faster when the weighting on the control r is increased; also the number of
iterations required for convergence in this problem increases for larger yo

N ,
ranging from 3 for yo

N = 1, to 166 for yo
N = 50. In addition, the algorithm

failed to converge for α < 1 × 10−5, which demonstrates the need for the
dynamics to be continuously differentiable.

5 Conclusion

We discussed the formulation and solution of several important optimal con-
trol problems for robotic systems. The most challenging case by far is an
underactuated system with contact constraints. We developed an algorithm
for solving such nonlinear optimal control problems for systems with quadratic
performance measures and unconstrained controls. Contact constraints were
accounted for with penalty functions. Each subproblem in the course of the
algorithm is a linear quadratic optimal control problem that can be efficiently
solved by Riccati difference equations. We show that each search direction
generated in the linear quadratic subproblem is a descent direction, and that
the algorithm is convergent. Computational experience has demonstrated that
the algorithm converges quickly to the optimal solution.

References

1. J.T. Betts, “Survey of Numerical Methods for Trajectory Optimization,” Jour-
nal of Guidance, Control and Dynamics, V. 21: (2) 193-207, 1999.

2. R. W. Brockett, “Robotic manipulators and the product of exponentials for-
mula,” Proc. Int. Symp. Math. Theory of Networks and Systems, Beer Sheba,
Israel, 1983.

3. A.E. Bryson and Y.C. Ho, Applied Optimal Control, Wiley, New York, 1995.
4. Y-C. Chen,“Solving robot trajectory Planning problems with uniform cubic B-

splines,” Optimal Control Applications and Methods, Vol. 12, No. 4, pp. 247-262,
1991.

5. A. De Luca, L. Lanari and G. Oriolo,“A Sensitivity Approach to Optimal Spline
Robot Trajectories,” Automatica, Vol. 27, No. 3, pp. 535-539, 1991.

6. von Stryk O. Numerical solution of optimal control problems by direct collo-
cation. Optimal Control, Bulirsch R, Miele A, Stoer J, Well KH (eds), Inter-
national Series of Numerical Mathematics, vol. 111. Birkshauser Verlag; Basel,
1993; 129143.

7. Hargraves CR, Paris SW. Direct trajectory optimization using nonlinear pro-
gramming and collocation. Journal of Guidance, Control, and Dynamics, 1987;
10:338342.

8. Enright PJ, Conway BA. Optimal finite-thrust spacecraft trajectories using col-
location and nonlinear programming. Journal of Guidance, Control, and Dy-
namics, 1991; 14:981 985.

9. D.G. Luenberger, Linear and Nonlinear Programming, Addison Wesley, 1989.

Recent Advances on the Algorithmic Optimization of Robot Motion 19

10. B. Martin and J.E. Bobrow, “Minimum Effort Motions for Open Chained Ma-
nipulators with Task-Dependent End-Effector Constraints,” International Jour-
nal of Robotics Research, Vol. 18, No. 2, February, 1999, pp. 213-224.

11. R. W. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation, CRC Press, Boca Raton, Florida, 1993.

12. J.P. Ostrowski, J.P. Desai, V Kumar, “Optimal gait selection for nonholonomic
locomotion systems,” International Journal of Robotics Research, vol.19, (no.3),
March 2000. p.225-237.

13. F.C. Park, J.E. Bobrow, and S.R. Ploen, “A Lie Group Formulation of Robot
Dynamics,” International Journal of Robotics Research, Vol. 14, No. 6, Decem-
ber 1995, pp. 609-618.

14. A. Sideris and J. E. Bobrow, “An Efficient Sequential Linear Quadratic Algo-
rithm for Solving Nonlinear Optimal Control Problems,” Proceeding of the 2005
IEEE Conference on Decision and Control, Portland, Oregon.

15. G. A. Sohl, and J. E. Bobrow, “A Recusive Dynamics and Sensitivity Algorithm
for Branched Chains,” ASME Journal of Dynamic Systems, Measurement and
Control, Vol. 123, no. 3, Sept. 2001.

16. G. A. Sohl, and J. E. Bobrow, “Optimal Motions for Underactuated Manipula-
tors,” 1999 ASME Design Technical Conferences, Las Vegas, September.

17. M. Spong, “The swing up control problem for the Acrobot,” IEEE CONTR
SYST MAG, V. 15: (1) 49-55 FEB 1995.

18. Veeraklaew T., and Agrawal S.K., “Neighboring optimal feedback law for higher-
order dynamic systems,” ASME J. Dynamic Systems, Measurement, and Con-
trol, 124 (3): 492-497 SEP 2002.

19. R. Fletcher, Practical Methods of Optimization, Wiley, 2nd edition, 1987.
20. Chia-Yu E. Wang, Wojciech K. Timoszyk and James E. Bobrow, “Payload Max-

imization for Open Chained Manipulators: Finding Weightlifting Motions for a
Puma 762 Robot,” IEEE Transactions on Robotics and Automation, April 2001,
Vol. 17, No. 2 pp:218-224.

21. C-Y. E. Wang, J. E. Bobrow, and D. J. Reinkensmeyer, “Swinging ¿From The
Hip: Use of Dynamic Motion Optimization in the Design of Robotic Gait Reha-
bilitation,” Proceedings of the IEEE Conference on Robotics and Automation,
Seoul, Korea, May 2001.

22. I. Wickelgren, “Teaching the spinal cord to walk,” Science, Vol. 279 pp. 319-321,
1998.

