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Abstract - The field of robot-assisted movement
therapy grew rapidly over the past ten years. In this
paper we discuss three problems that the field will likely
need to address in order to continue to flourish. These
problems are to: 1) define the specific benefits of robotic
actuation 2) increase the magnitude of functional
benefits of robotic training; and 3) identify the
mechanisms of motor learning in robot-manipulated
environments. We review recent research in our
laboratory that is addressing these problems. These
projects are identifying motor learning tasks that robotic
assistance can enhance, developing non-robotic
technology when appropriate, and optimizing the forms
of robotic assistance to the motor learning properties of
humans.

I. INTRODUCTION

T HE field of robotic movement therapy began in earnest
in 1997 with the publication of the results from the first
clinical study ofMIT-MANUS, a planar, two-joint robot

that can assist patients in moving their arms across a tabletop
[1]. This study found that sub-acute stroke patients who
received additional movement training with MIT-MANUS
recovered significantly better than patients who received
only standard rehabilitation therapy. Since that time, tens of
research groups and several companies have begun
developing robotic movement therapy devices for the arm,
hand, and legs, and major public and private funding
agencies in the U.S., including NIH, NIDRR, NIST ATP,
and the Christopher Reeve Foundation are providing
millions of US dollars of funding to support this work.
Subsequent clinical studies of robotic movement training
have also been positive, to the extent that a recent systematic
review of robotic therapy concluded that robotic therapy is
well suited for improving proximal upper extremity strength,
and might promote motor recovery to a greater extent than
traditional therapy [2].

Despite this progress, the field of robotic movement
therapy faces serious challenges ahead. We first describe
three core problems that we believe the field must address in
order to continue to flourish, and then describe several of
our own research projects that are aimed at addressing these
problems.
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II. KEY PROBLEMS FOR ROBOTIC MOVEMENT THERAPY

A. It has not been demonstratedyet that robots are
necessary to achieve observed therapeutic benefits
It is has been established that robotic movement therapy

can be beneficial for reducing upper [2] and lower extremity
movement impairment [3, 4] following stroke and spinal
cord injury (SCI). However, control groups have often not
been chosen to identify the specific benefit of robotic
devices [5]. A robot is a robot by virtue of its capacity to
move in response to commands; such movement requires
actuators. What is unknown is whether actuators (and thus
robots when they actuate patient's limbs) provide
therapeutic benefits beyond those associated with the
patient's effort to move in and of itself [5]. Put another way,
could patients gain comparable therapeutic benefits if the
actuators were removed, the joints of the robot were free to
move, the same software were used for patient feedback, and
the same exercise duration were used? In at least one study
of the upper extremity after stroke, the answer was yes,
suggested that it is the effort by the patient rather than the
assistance by the robot that primarily drives neuroplasticity
[6].

B. Therapeutic benefits ofrobotic therapy are small.
Even if actuators are beneficial, the therapeutic benefits of

robotic therapy that have been measured so far are small.
For the upper extremity, one way to gauge benefit is a
clinical scale called the Fugl-Meyer score. The Fugl-Meyer
score is based on assigning a score of 0 (no movement), 1,
(abnormal movement), or 2 (normal movement) to 33
desired movements, such as raising the arm while keeping
the elbow extended, for a maximum score of 66. Gains in
Fugl-Meyer score due to robotic therapy are typically in the
range of 2-6 points [7]. The Fugl-Meyer score measures
reductions in impairment; increases in functional measures
are typically small or non-significant. For robotic locomotor
training, a common outcome measure is the walking speed
of a 10-meter walk. Typical gains in walking speed
attributable to robotic therapy after stroke are around 0.1
m/sec [3, 4]. Thus, while impairment reduction offered by
robotic therapy is meaningful to patients, patients must
practice intensively - several hours a week for many weeks,
in order to regain incremental amounts ofmovement ability.
A notable exception to these small gains comes from the

work of Hesse with the upper extremity [8]. Sub-acute
stroke patients who trained with the bi-manu-trac device,
which moves the wrist in supination/pronation or
flexion/extension, gained 15 additional points on the Fugl-
Meyer score, compared to those who got FES training of the
wrist muscles. Understanding why patients benefited more
from this device and protocol is an important question for
future research.
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C. We do not understand how motor learning during
neuro-rehabilitation works at a level ofdetail sufficient to
dictate robotic therapy device design.
Perhaps the most fundamental problem that robotic

movement therapy must address to continue to make
progress, however, is that we understand very little about
how the sensory motor system re-organizes itself in response
to robotic movement training. Research on the response of
the motor system to training has made several important
conceptual breakthroughs in the past twenty years, including
the observation that the motor cortex re-organizes the
representations of the upper extremity following both injury
and training [9, 10], the observation that the isolated
mammalian spinal cord can learn motor tasks including
walking [11], and the observation that the motor system
continually forms and updates internal models of the
dynamics of its limbs [12]. However, our understanding of
the behavioral mechanisms that prompt such re-organization
is still basic: we know that repetition, with active
engagement by the participant, promotes re-organization [9,
10]. We also know that kinematic error drives motor
adaptation [13-15]. But the precise ways that mental
engagement, repetition, and kinematic error translate into a
pattern of recovery is not well defined for rehabilitation.
This gap in knowledge is a problem because engineers

cannot design robotic movement training algorithms from
first principles. To draw an analogy, if one understands
kinematics thoroughly, one can synthesize a mechanism to
move through a desired set of paths. No such theoretical
basis exists for robotic movement training: we do not
understand motor recovery in sufficient detail to synthesize
optimal training mechanisms or algorithms.

III. RESEARCH UNDERWAY AT U.C. IRVINE TO ADDRESS
THESE ISSUES

We are attempting to address these issues with work that
is aimed at identifying motor learning tasks that robotic
assistance can enhance, developing non-robotic technology
when appropriate, and optimizing the forms of robotic
assistance to the motor learning characteristics of humans.

A. Research Direction: Identify motor learning tasks that
can be enhanced with robotic assistance.
There is a joke that if you consult an orthopedic surgeon

about what to do about a stuffy nose, he will suggest cutting
off your nose. In the same way, we can poke fun of
ourselves as roboticists by saying if a rehabilitation clinician
consults us about how to help someone learn a motor task
during rehabilitation, we will suggest a multiple degrees-of-
freedom exoskeleton that is capable of mechanically forcing
the person to do the task. Clearly, we need better guidelines
for what rehabilitation tasks can actually be enhanced by
robotic assistance.
The answer to this question will be informed by results in

the field of "guidance" in the motor learning literature.
Guidance refers to mechanically assisting a person in
performing a motor task in order to help him or her learn it
[16], which is the therapeutic paradigm adopted by most

robotic therapy devices (although, see [17] for error-
amplifying approaches). Only a few studies of guidance
have been published, focusing mainly on hand positioning
tasks. These studies have generally not found significant
benefits of guidance for motor learning (e.g. [ 18-20].
We recently revisited the issue of whether guidance can

help with motor learning, but for a more dynamic task than
has typically been studied in guidance studies, and one that
seemed to us well suited to guidance - learning to drive a
vehicle. We developed a control algorithm for a force
feedback steering wheel that robotically assists in steering a
virtual power wheelchair through a virtual room (Fig. 1).
The particular application we have in mind is trying to
partially automate wheelchair's driver's training for very
young children with cerebral palsy. In other words, we want
to give children a way to practice driving a wheelchair
without always having a rehabilitation therapist walk next to
them and provide hand-over-hand assistance.
We developed a method for systematically reducing (or

"fading") the guidance provided by the steering wheel based
on real-time measurement of steering errors. Specifically,
we adapted the stiffness of the robotic guidance K at the ith
time step using an error-based learning law with forgetting:

Ki1 =fKi- ge (1)
where 0 < f < 1 is a "forgetting factor" and g > 0 is a
"learning gain". We used this type of learning law because
it tries to reduce the level of robotic guidance when errors
are small because of the forgetting factor. Further, it can be
shown that such a learning law is used by the human motor
system to overcome a predictable disturbance during
reaching and walking [15], and further, that it minimizes a
cost-function with error and effort terms [21]. The problem
of robotic assistance-as-needed can similarly be posed as an
optimization problem: minimize kinematic error, but also
minimize robotic assistance force [22]. An error-based
learning law with forgetting like (1) is one way to achieve
this minimization [22, 23].
We found that subjects who trained with such "guidance-

as-needed" still learned how to steer but with significantly
smaller tracking errors. Further, training with guidance-as-
needed produced smaller final tracking errors than training
without guidance, because subjects apparently learned from
the robotic forces better when to initiate turns (Figure 1).
These results are to our knowledge the first evidence that

robotic guidance can enhance learning of a motor task, when
compared to a non-guided condition. Based on these results,
we hypothesize that a domain in which robotic guidance will
be useful for rehabilitation is in teaching timing for tasks in
which timing is a critical element. Perhaps robotic guidance
provides a sensory cue that can be used by the motor system
to determine precisely when a motor command should be
initiated within an ongoing sensory motor sequence. In
contrast, robotic guidance may be less appropriate for
demonstrating the required magnitude of the motor
command for the movement, since it alters the relationship
between muscle force and movement for the task, and
thereby obscures the motor command needed to complete
the task unassisted.
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Figure 1: lop: We used a force-feedback steering wheel to pi

guidance forces that taught unimpaired subjects how to dr
simulated w~heelchair that moved at a constant velocity along a
Bottom: After training with an adaptive guidance algorithny
subjects who received training with robotic guidance (n =15
significantly smaller tracking errors than those who receiv4
guidance (n =8, p < 0.05). The final tracking error was correlate(
the turn initiation distance -i.e. how far ahead of each turn the su
initiated turns. Subjects who received guidance learned to initiate
earlier, closer to the more optimal distance that the robotic st(
wheel demonstrated. Note that the asterisk denotes the turn mui
distance and tracking error when the steering wheel steered by
with an optimized feedback law, without a human operator.
subjects who trained with guidance (circles) behaved more lit
robot when guidance was removed.

Taking a step back, what we would like to suggest iP;
there may be specific types of motor learning task,
which robotic guidance can be effective, and other
which it is not helpful. Identifying the tasks that can b
from robotic assistance is an important direction for f
research. When we have rigorously identified these t
we will at the same time have shown that actuators
matter. Further, the functional benefits of robotic therap
these tasks will likely be more substantial.

B. Research Direction. Develop non-robotic therapy
technology when appropriate
We recently found no significant benefit to ro-

assistance for re-training reaching after chronic stroke
compared to an equally-intense, non-assisted tra-
paradigm [6]. This led us to consider how non-ro

devices could be used to enhance motor rehabilitation. Our
work here has recently focused on a passive arm orthosis
called T-WREX [24], which uses rubber bands to help lift
the arm, a grip sensor to sense even small amounts of grip
force, and joint sensors to measure arm movement. T-
WREX stands for Therapy-WREX, and is based on
"WREX", a mobile arm support developed for children with
arm weakness by Dr. Tariq Rahman and colleagues of the
A.I. Dupont Hospital for Children [25].
We report in another paper at this conference the details

of an ongoing randomized, controlled study of motor
training with T-WREX, compared to a matched amount of
conventional, self-directed tabletop exercises following
chronic stroke. Briefly, the preliminary results from this
ongoing study indicate that repetitive motor training with T-
WREX can reduce motor impairment for chronic stroke
survivors with moderate to severe upper extremity
hemiparesis. Individuals in the T-WREX (n 11) and
control groups (n 12) demonstrated significant
improvements in arm movement ability according to the
Fugl-Meyer scale (3.7 and 2.7 points on average,
respectively). Subjects in both groups reported nearly
significant gains on a functional scale that grades quality and
amount of affected arm use in the home setting. There were
no significant differences between groups with the current
sample size. However, subjects in both training groups
strongly preferred the use of T-WREX for therapy, based on
a survey given post-training, even after they were given a
chance to try both types of therapy.

rovide These results demonstrate that upper extremity movement
rive a practice with a non-robotic, exoskeleton can reduce motor
trachk. impairment, confirming previous pilot study results [24].
*) had Similar results may be possible with the lower extremity
ed no [26]. Further, based on these results, we hypothesize that
d with movement practice with robotic or non-robotic devices can
tJurns enhance patient motivation, as long as the devices provide
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Figure 2: T-WREX- a non-robotic approach to automating upper
extremity movement training. The orthosis provides gradable support
for the arm against gravity using elastic bands, and measures arm
movement and hand grasp as the user interacts with computer
simulations of functional activities.
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therapy devices to compete with robotic ones in training
effectiveness highlights the need to better identify the
specific benefits of robotic devices, and to invest effort in
non-robotic, motivating technology as well.

C. Research Direction: Optimize robotic assistance to
promote engagement and effort and allow some error
As described above, we know that effort, engagement, and

error matter for motor recovery. For a rehabilitation robot,
promoting engagement and effort may be as simple as
providing ongoing feedback about the patient's
participation. For example, the Lokomat [27] is a gait
training device that can be used to force a patient's legs
through a stepping trajectory with large impedance. In such
a case, the patient can choose to fall asleep in the device and
still "walk". However, patients typically don't fall asleep,
and it has been shown that the provision of visual feedback
that measures participation, such as the size of the contact
force against the device, can induce patients to try harder
[28]. Thus, when patients are captured in a relatively rigid
robot orthosis, it appears that they can voluntarily modulate
their effort, and that bio-feedback can further facilitate their
effort.
However, walking in a stiff robot prevents kinematic

errors that may be helpful for learning. In other words, if a
device is less stiff, it has the advantage that variations in
motor commands created by the patient will register as
variations in the movement pattern of the robot-patient
assembly. Thus, compliance maintains the causal
relationship between effort and motion, which may be
helpful both for motivation and for motor learning.
We have been studying experienced rehabilitation

therapists in order to understand how they provide manual
assistance for a complex task like body-weight supported
gait training [29]. Recent findings suggest that therapists act
like position-controlled robots, but only at key moments in
the step cycle. Figure 3 shows the estimated limb stiffness
of an experienced therapist as she manually assisted at the
knee of a severely impaired (ASIA B) person with SCI
during the stance and swing phase of walking on a treadmill.
The therapist appeared to act like a position controller at the
knee at the beginning of both swing and stance, but then
acted like a pure force controller with very low stiffness
throughout much of stance and swing. This strategy
maintained a general kinematic pattern of stepping but
allowed some variability (e.g. 5-10% of the size of the step),
rather than enforcing one repeated, ideal kinematic pattern.
How can a therapist move a limb in a general pattern

without relying on position control? The likely answer is
that they form an internal model of the dynamics of the
patient's limbs and use force control. In other words, the
therapist senses the movement capability of the patient,
using sight and feel, and then adjusts his or her level of
assistance force to the patient's need. This allows the
therapist to apply an appropriate force without continuously
relying on a stiff position control strategy.

A. Experimental set-up and sample regression to identify stiffness
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Fig. 3 A) An instrumented orthosis for measuring how therapists
control a subject's leg during body weight supported locomotor
training on a treadmill. The subject had an SCI and was classified as
ASIA B. We used the orthosis to measure the forces and motions
applied to the knee and ankle during manual assistance. To identify the
stiffness at the knee due to the therapist and patient, we regressed the
horizontal force applied to the knee versus the change in knee
horizontal position, relative to the mean position, at samples along the
step cycle from step to step (A- right). B) Identified knee stiffness
during swing. The stiffness is plotted versus the position of the ankle
during the gait cycle. A negative stiffness corresponds to a stabilizing
controller, like a position controller. C) Identified knee stiffness during
stance. Note that the therapist acted like a proportional position
controller for a short time at the beginning of swing and stance (i.e.
negative stiffness is significantly different from zero at the locations
denoted by *). The identified stiffness was near zero throughout much
of the rest of the step cycle, even though substantial assisting forces (not
shown) were applied to the knee. Stiffness became positive (i.e. like an
unstable spring) when therapist helps change leg direction at end of
swing and end of stance.
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How then can a robot be made to use force control in a
similar way to successfully assist an impaired person in
moving in a desired pattern, but still allow that person to
influence the movement trajectory? One approach is to use
established techniques in adaptive control theory to learn the
appropriate amounts of force to help move the person's
limbs. We recently investigated the use of one standard
adaptive controller (an "adaptive sliding controller" [30]) for
the task of moving a severely weakened patient's arm
between two targets following stroke. Subjects placed their
arm in a compliant robotic exoskeleton called Pneu-WREX
[31] that allows spatial motion of the hand, and then tried to
track a cursor as it moved between two locations at chest
level in front of their body. Many stroke patients are
incapable of doing this task since it requires holding the
hand up in front of the body against gravity. The stiffness of
the exoskeleton was set at 70 N/m, which is at the low end
of what one might expect from a therapist's arms [32].
The compliant exoskeleton could not rigidly move the

subject's arm through the task, so, as subjects tried to
perform this task, we used an adaptive sliding controller to
update a model of the forces required to lift the patient's
arm. The model was constructed by adjusting the parameters
of radial basis functions based on tracking error
measurements. We found that this type of adaptive
controller successfully learned the assistance forces
necessary to move the relaxed arms of patients to targets.
(Fig. 4). However, when we asked subjects to begin to
move on their own, we found the interesting property that
the adaptive controller "refused" to relinquish control to the
subject. In addition, if we initialized the adaptive controller
to zero force and asked subjects to move between the two
targets, the subjects gradually allowed the controller to take
over performance of the support component of the task. In
effect, it appears that the human motor system took
advantage of the opportunity to do less work when
connected to a robot with an adaptive controller that had
the potential to take over.
The situation may be different from human interaction

with a stiff controller, because with a stiff controller, the
patient can do anything and the controller will "block" the
force immediately, and stay on course because of its rigidity.
With a very compliant controller, if the patient changes the
force he or she generates, a kinematic error develops, and
then both the patient's motor system and the adaptive
controller compete to correct this error over a time frame
related to the speed at which they update their internal
models of the system dynamics. The human motor system
appears to allow a standard adaptive controller to win this
competition, perhaps because the standard adaptive
controller responds quickly, and by allowing it to respond
the motor system achieves the desired movement with less
effort.
To engage the human motor system, we incorporated a

forgetting rate in the adaptive controller that caused the
controller to try to reduce its force when kinematic error was
small. We had developed some background theory for this

study. Remarkably, inclusion of this forgetting rate caused
the subjects to exert significantly more effort for supporting
their own arms as they tracked the cursor between the two
targets, while at the same time still keeping tracking error
small (Fig. 4). With such a controller, subjects have a strong
subjective impression that they are creating and influencing
the ongoing movement, perhaps because their effort does
influence the robot path. We are now using the adaptive
sliding controller with forgetting for training stroke subjects
with the compliant Pneu-WREX orthosis. We plan on
applying it to the compliant gait training robot developed in
our laboratory as well (PAM/POGO, [33]).
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Fig. 4. Top: Person with a stroke receiving movement training with a
robotic exoskeleton called Pneu-WREX. Bottom: Mean vertical
assistance force provided by Pneu-WREX as a function of patient
impairment (severely impaired, Fugl-Meyer < 24, n = 4; moderately
impaired, 24 < FM < 66 n = 4; unimpaired, FM = 66, n = 3). The task
was to track a cursor that moved between two targets placed in the
frontal plane at chest height. With a forgetting rate in the adaptive
controller, the robot contributed significant less support force (grey
bars versus white bars in top plot, paired t-test across subjects, p <

0.05), indicating that the subjects exerted more force as they performed
the task. Tracking error increased with forgetting present, but was still
under 1.5 cm even for severely impaired patients who could not do the
task without robot assistance.

sort of modification based on motor adaptation studies with
unimpaired subjects [22], as discussed above in the steering
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IV. DISCUSSION AND CONCLUSION

The clinical application of robotic movement therapy will
continue to accelerate as researchers validate the use of
actuators for therapy, find ways to increase the functional
benefits of robotic therapy, and use motor adaptation
research to inform their machine designs. As reviewed
above, in our own research, we are seeking to identify the
categories of tasks for which robotic guidance is effective.
One candidate category is tasks for which timing is
important, such as steering a vehicle. We are forgoing
robotic assistance for simpler non-actuated devices when we
can (e.g. T-WREX). We are making robot therapy systems
with very low mechanical compliance, like rehabilitation
therapists, thereby allowing the patient to directly influence
movement kinematics (e.g. Pneu-WREX, PAM/POGO). By
necessity, we are then devising adaptive controllers that
form real-time models of patient's motor capability in order
to move limbs accurately with force control. We are
discovering that motor adaptation mechanisms, such as the
human tendency for error/effort optimization, impact the
way patients interact with such compliant, adaptive, assistive
robots. Humans appear to contribute less effort to a
rehabilitation task if they are attached to a robot that will
adapt and begin to do the task for them. This problem can
be addressed by making the robot try to minimize its force
also via a forgetting process.
A key goal for future research is to determine whether

compliant robot assistance improves the clinical results of
robotic movement therapy. We will also try to improve our
understanding of the motor adaptation mechanisms that
operate during rehabilitation in order to increase the
effectiveness of robot-assisted therapy.
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