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High Bandwidth Tilt Measurement
Using Low-Cost Sensors

John Leavitt, Member, IEEE, Athanasios Sideris, Member, IEEE, and James E. Bobrow, Member, IEEE

Abstract—In this paper, a state estimation technique is devel-
oped for sensing inclination angles using low-cost sensors. A low-
bandwidth tilt sensor is used along with an inaccurate rate gyro and
a low-cost accelerometer to obtain the measurement. The rate gyro
has an inherent bias along with sensor noise. The tilt sensor uses
an internal pendulum and therefore has its own slow dynamics.
These sensor dynamics were identified experimentally and com-
bined to achieve high-bandwidth measurements using an optimal
linear state estimator. Potential uses of the measurement technique
range from robotics, to rehabilitation, to vehicle control.

Index Terms—Angle gyro, inclinometer, orientation estimation,
pose estimation.

I. INTRODUCTION

MANY modern mechanical control systems use orienta-
tion feedback relative to an inertial reference frame. For

systems connected to the ground by a hinge or revolute joint,
measuring orientation is not difficult since an encoder can be
attached between ground and the rotating link to directly give
orientation. However, for any untethered system, or one that can
move about freely in space, determining its orientation is not
trivial. In our case, we are designing a hopping robot with a
single actuator, capable of balancing despite inherent open-loop
instability [5]. This robot requires accurate orientation and rate
feedback at a relatively high bandwidth to achieve stable bal-
ance control. In this paper, we develop a state-space estimation
approach that produces a high-bandwidth orientation or tilt sig-
nal using inexpensive components. We focus our attention on
planar motions, since sensing in three dimensions first requires
sensing in the plane [6].

One option for planar orientation measurement is the use of
a tilt sensor, such as a pendulum-type inclinometer, but these
sensors have their own dynamics with limited bandwidth and
therefore cannot provide the correct tilt information at high
frequencies. Another approach is to use a gyroscope to infer
the tilt angle of the robot. In theory, integrating the angular
velocity output of a gyroscope (hereafter referred to as a gyro
or rate gyro) should provide an accurate tilt angle, even when
the system is moving quickly. In practice, low-cost gyros have
an unknown bias (offset) and/or scaling in their output, as well
as signal noise. Integrating the gyro output results in an angle
estimate plus a drift term. This means that it is not practical to
sense inclination angle from a gyro alone.
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Another approach is to use a two-axis accelerometer to mea-
sure the direction of the gravity in a rotating reference frame [7].
Because accelerometers have a relatively high bandwidth and
low cost, they are often used in this manner as tilt sensors. In
practice, however, we have found them to be sensitive to vibra-
tions, and relatively difficult to use since they require a nonlinear
arctangent evaluation in the control loop. Ojeda and Boren-
stein [4] used accelerometers as tilt sensors to reset their gyros
when their robot is not moving. They also found that vibrations
during motion were problematic. More recently, Rehbinder and
Hu [3] developed a switching state estimator for sensing attitude
in three dimensions. Their approach combines gyro and acceler-
ation measurements, and switches the estimator rely mostly on
the gyro signal when the magnitude of the acceleration vector is
high. They noted the problem of a bias signal from the gyros, but
were not able to eliminate it. Our approach solves this problem
with the use a tilt sensor that provides enough extra information
for the state estimator to determine the bias online.

The state estimator developed in this work combines
data from a gyro, a pendulum inclinometer, and a two-axis
accelerometer to estimate the tilt angle. We used a U.S. Digital
T2-7200-T optical inclinometer (cost ≈ $100, U.S. Digital
Corporation), along with a Murata ENC-03JA piezo gyroscope
(cost ≈ $50, Murata Manufacturing Companey, Ltd.), and a
Memsic MXA2100A accelerometer (cost ≈ $8, Memsic, Inc.),
as shown in Fig. 1. At first glance, our approach is similar to
that used by Baerveldt and Klang [1] and by Rehbinder and
Hu [2]. However, we found that none of the existing methods
produced the accuracy or bandwidth that we required. Baerveldt
and Klang assume the inclinometer is a first-order low-pass
filter with time constant τ = 0.53 s. This model is shown to be
good for lower frequency motions (in their case 0.15–1.5 Hz),
but the first-order assumption is not valid at higher frequencies.
Rehbinder and Hu use a nonlinear observer to not only estimate
attitude, but also model their inclinometer as a first order
low-pass filter. Again, their observer is shown to perform well
at frequencies around 1 or 2 Hz. Because our robot systems
potentially operate at frequencies approaching 5 Hz, we needed
to develop a significantly improved state estimation technique.

Our method has four main differences from previous
approaches: 1) a higher fidelity model for the inclinometer was
developed using both a physics-based model and a frequency-
domain system identification technique; 2) an optimal state
estimator (Kalman filter) is used that continuously combines the
measurements to obtain more accurate angle and angular rate
information; 3) the inherent bias of the gyroscope is identified,
and compensated for, online; and 4) translational acceleration
is explicitly accounted for in the tilt-sensing state estimator.
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Fig. 1. U.S. Digital inclinometer (left), Murata gyroscope (middle), and Mem-
sic accelerometer. For relative size of inclinometer and gyroscope, note that
connection wires are 0.1 in apart.

Fig. 2. Modeling the inclinometer as a simple pendulum.

II. MODELING AND PERFORMANCE CHARACTERISTICS

OF THE SENSORS

A. Inclinometer

The US Digital optical inclinometer measures the angular po-
sition of a pendulum relative to its housing. An encoder with a
resolution of 7200 counts/revolution (after quadrature) is used
to track the position of the pendulum. Fig. 2 shows a schematic
representation of the inclinometer. Because the pendulum has its
own dynamics, the desired inclination angle, θt, output from this
sensor is accurate only at low frequencies. To investigate the dy-
namics of our inclinometer, we mounted a hinge joint to a fixed
table (see Fig. 3) and measured the true angle of the pendu-
lum with an optical encoder. We then oscillated the joint with
an increasing frequency “chirp signal.” The chirp input starts
at 0.25 Hz and ends at approximately 4.6 Hz over a period of
107 s. Sensor outputs were sampled at 500 Hz. The inclinometer
shown in Fig. 3 was mounted at the axis of rotation so that it did
not undergo any base acceleration during the system identifica-
tion process. Fig. 4 shows the output of the inclinometer as a
function of time as the actual inclination angle (measured with
an encoder and used for comparison only) varies with the in-
creasing frequency chirp. At high frequencies, the inclinometer
exhibits distortion in both magnitude and phase.

To obtain the dynamic model for the system, consider the tilt
sensor to be a simple pendulum with damping and assume that
there is a translational acceleration of the base defined by (ẍ, ÿ)
as shown in Fig. 2. Let θ be the actual angle of the sensor and θt

Fig. 3. Test apparatus for encoder, inclinometer, gyroscope. A chirp test signal
was applied to the hardware by a pneumatically actuated controller.

be the pendulum angle, which is the tilt sensor output, as seen
in Fig. 2. The differential equation for the system is

J(θ̈ − θ̈t) = cθ̇t − mgl sin(θ − θt)

− ml(ÿ sin(θ − θt) + ẍ cos(θ − θt))

for some damping coefficient c, length from pivot to mass cen-
ter l, mass m, and inertia about the pendulum pivot J . Assum-
ing small θ − θt, sin(θ − θt) ≈ θ − θt and cos(θ − θt) ≈ 1. We
further assume that the nonlinear term ÿ(θ − θt) that results
from these assumptions is negligible. The differential equation
simplifies to

J(θ̈ − θ̈t) = cθ̇t − mgl(θ − θt) − mlẍ.

If we define α1 ≡ c/J, α2 ≡ mgl/J, and γ1 ≡ α2/g and take
β0 = 1, β1 = 0, and β2 = α2, the transfer function representa-
tion of the linearized equations of motion for this system has
the form

Θt(s) =
β0s

2 + β1s + β2

s2 + α1s + α2
Θ(s)

+
γ1

s2 + α1s + α2
Xa(s) (1)

where Θt(s),Θ(s), and Xa(s) are the Laplace transforms of the
θt(t), θ(t), and ẍ(t) signals, respectively.

B. Gyroscope and Accelerometer

To investigate the dynamic characteristics of the Murata gy-
roscope, we mounted it to the same test apparatus as used for
the inclinometer experiments and applied the same chirp test
signal. The output of a Murata gyro (approximately scaled to
units of rad/s) is shown in the top plots of Fig. 5. Also shown
in the figure is the signal obtained from a backward finite dif-
ference of the joint encoder signal. This signal was also passed
through a first-order low-pass filter with a cutoff frequency of
20 Hz. From the plots, it appears that a bias of about 3 rad/s is
present in the gyro output signal. We then subtracted this value
from the gyro signal, and integrated this difference to obtain the
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Fig. 4. Tilt angle measured with encoder and inclinometer in a chirp motion. The left-hand plot shows the first 15 s of motion and the right-hand plot shows the
last 5 s.

Fig. 5. Raw output from the gyroscope and the differentiated and filtered output of the encoder for the low- and high-frequency parts of the chirp input (top).
Integral of the gyro signal minus a constant drift and the joint encoder signals (bottom).
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Fig. 6. Block diagram of estimation system with no noise input. The measured
signals are the outputs of the gyroscope ωg, the accelerometer ẍ, and the tilt
sensor θt.

bottom plots shown in Fig. 5. The plots show a significant error
in magnitude from the true angle (as measured by the encoder).
It is clear that the gyro sensor introduces a drift to the signal due
to the unknown bias term, and this bias might be slowly varying
with time.

To obtain the translational acceleration ẍ in (1), we used a
two-axis accelerometer made by Memsic. The bandwidth for
this device is 30 Hz.

III. OBSERVER DESIGN FOR ACCURATE TILT MEASUREMENT

In this section, we construct an optimal observer (Kalman
filter) that considerably improves tracking of the tilt angle θ
by combining the inaccurate measurements of the gyro and
tilt sensors. The observer reconstructs the states of the angle-
measuring system as depicted in Fig. 6. In this system, the tilt
sensor is described by the second-order transfer function (1).
The observable-canonical-form state-space realization for (1)
can be written as follows:

[
ẋ1

ẋ2

]
=

[
−α1 1
−α2 0

] [
x1

x2

]

+
[

β1 − β0α1

β2 − β0α2

]
θ +

[
0
γ1

]
ẍ

θt = [1 0]]
[

x1

x2

]
+ β0θ + vt. (2)

In (2), vt represents the inclinometer measurement noise. Next,
the gyro sensor is described by the equation

ωg =
1
α

(ω + δ) + vg (3)

where ω and ωg are actual and measured angular velocities, δ and
α are the bias and scaling factors in the gyro sensor, respectively,
and vg represents the gyro measurement noise. Finally, to model
the gyro bias, we use the equation

δ̇ = vb. (4)

In (4), vb is white noise that is introduced in the model mainly
for the optimal observer problem to be well posed and solvable;
however, it also allows the gyro bias to fluctuate to some extent,
which is consistent with our experience in practice.

The above equations together with the relation

θ̇ = ω

give the following state-space equations for the angle measuring
system:


δ̇
θ̇
ẋ1

ẋ2


 =




0 0 0 0
−1 0 0 0
0 β1 − β0α1 −α1 1
0 β2 − β0α2 −α2 0







δ
θ
x1

x2




+




0 0
α 0
0 0
0 γ1




[
ωg

ẍ

]

+




0 1 0
0 0 −α
0 0 0
γ1 0 0





 vx

vb

vg




θt = [0 β0 1 0]]




δ
θ
x1

x2


 + vt

where we also added measurement noise vx to the accelerometer
signal ẍ.

This system is of the standard form
ż = Az + Bu + Bvv

θt = Cz + vt

with z ≡ [δ θ x1 x2]T , u ≡ [ωg ẍ]T , v ≡ [vx vb vg]T , and
A,B,Bv, and C defined in the obvious way. Note that in this
formulation, the unknown bias δ and the tilt angle θ are states
of the system. The inputs are the measured gyro signal ωg, the
measured acceleration signal ẍ, and the measurement noises
vx, vb, vg, and vt. Finally, the output of the system is the mea-
sured inclinometer signal θt. Next, we consider a standard state
estimator (observer) of the form

˙̂z = A ẑ + K(θt − C ẑ) + Bu. (5)

Selecting the gain vector K such that A − KC is an asymp-
totically stable matrix guarantees that the state reconstruction
error z − ẑ remains bounded, and in the absence of the noise
signals, that z − ẑ converges asymptotically to 0. We actually
considered an optimal observer (Kalman filter) that minimizes
the mean square tracking error E[(z − ẑ)T (z − ẑ)] and can be
readily designed by considering the dual-state regulator prob-
lem (for example, see [8]) and using MATLAB’s lqr command.
In the cost function of the latter problem, the state weight-
ing matrix Q = diag{W 2

b , α2W 2
g , γ2

1W 2
x , γ2

1W 2
x } and the

control weighting matrix R = W 2
t , where Wb,Wg,Wx, and

Wt are the root mean square (RMS) values of the bias vb,
gyro vg, accelerometer vx , and tilt sensor vt noises, respec-
tively, all assumed to be modeled as white noise. The values
of W 2

b ,W 2
g ,W 2

x , and W 2
t are actually used to tune the perfor-

mance of the observer, namely, to tradeoff the speed of state
reconstruction with the extent of observer bandwidth and its
susceptibility to measurement noise. We found that the values
W 2

b = 1.0,W 2
g = 0.866,W 2

x = 1.376, and W 2
t = 0.5 provide
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such a reasonable tradeoff, resulting in the observer gains
K = [−1.4142 2.2286 44.8444 212.6269]T .

IV. SYSTEM IDENTIFICATION OF INCLINOMETER DYNAMICS

From (5), it is clear that the observer acts as a filter that com-
bines the imperfect gyro ωg, inclinometer θt, and accelerometer
ẍ signals to produce an improved estimate of the tilt angle θ in
terms of the estimated state ẑ(2). Note that the observer automat-
ically estimates the gyro bias δ in terms of ẑ(1) and compensates
for it. However, to use this scheme, we need to have the observer
parameters α1, α2, and β0, β1, β2 (recall that γ1 = α2/g), that
is, the inclinometer transfer function in (1) from θ to θt. We
employ a frequency domain identification technique to obtain
this transfer function. More specifically, the output of the inte-
grator/inclinometer system in Fig. 6 is θt, while the inputs to
this system (neglecting measurement noise) are ẍ and ω, with
the latter being related from (3) to the gyro measurement ωg by

ω = αωg − δ.

For the moment, we assume that δ = 0 and α = 1, i.e., ω = ωg,
and we will shortly see that the value of the bias δ does
not affect the frequency domain identification process, while
the actual scaling α can be easily determined through this
process. We used data for the identification procedure from
the experiment in Section V-A, where the translational ac-
celeration ẍ is zero. Thus, only the gyro ωg and inclinome-
ter measurements θt are used in the identification; however
once identified, the inclinometer dynamics are used in the ob-
server (5) in all situations, where ẍ might not be zero (exper-
iments in Sections V-B and V-C.) The measured signals ωg

and θt are produced by applying a chirp input as discussed in
Section II-A. Over the time horizon T = 107 s with a sampling
frequency f = 500 Hz, we collected N = 53 501 samples. We
then computed the discrete fourier transforms (DFT) of ωg(kTp)
and θt(kTp), k = 0, . . . , 53 500, where Tp = 1/f = 0.002 s us-
ing MATLAB’s fft command. Finally, we obtained samples of
the frequency response G(jkΩp), k = 0, . . . , 53 500 of integra-
tor/inclinometer combination in Fig. 6 as the ratio of the DFT of
θt (output) to the DFT of ωg (input—since we assume for now
ω = ωg), where Ωp = (2π/T ) = 0.0093 rad/s.

We should remark that a number of factors contribute to er-
rors in the estimation of the samples G(jkΩ). First, since the
chirp input has its power over frequencies from 0.25 to 4.6 Hz,
we can expect to be able to reliably identify the frequency range
from about 0.2 to 5 Hz. Then, errors may be introduced because
of aliasing and leakage [9]. Aliasing results if the sampling
frequency is less than twice the highest frequency in the signal
being sampled. However, we do not expect aliasing to be an issue
since we used an anti-aliasing filter with a cutoff frequency of
50 Hz. This means that our sampling rate of 500 Hz is ten times
higher than the expected bandwidth of the measured signals.
Leakage refers to the ripple-like effect in the frequency response
obtained from using (out of practical necessity) the Fourier
transformation on time-domain data over a finite horizon instead
of an infinite one. It can be reduced by increasing N , or by using
windowing filters at the expense of “smearing” the frequency

response [9]. Indeed, since we did not employ any data window-
ing, some rippling in the frequency samples can be observed but
the curve fitting approach employed to obtain the transfer func-
tion from the samples G(jkΩp) tends to smooth out this effect.

Next, the experimental frequency response curve [samples
G(jkΩ)] is fitted with a rational transfer function by minimizing
a least squares criterion

min
αk ,βl

N2∑
i=N1

wi

∣∣∣∣G(jΩi)−
β0(jΩi)m + β1(jΩi)m−1 + · · · + βm

(jΩi)n + α1(jΩi)n−1 · · · + αn

∣∣∣∣
2

(6)

with k = 1, . . . , n and l = 0, . . . ,m and where n,m are the
number of poles and zeros, respectively, of the model selected
by the user. Also in (6), the wi are weights that are selected to
emphasize certain frequencies such as those where the experi-
mental data show resonances/notches (see Fig. 7). We employed
a recursive algorithm reported in [10], but using a parametriza-
tion of the numerator and denominator polynomials of the fit
in terms of Chebychev polynomials [11], [12]; the Cheby-
chev parametrization alleviates the numerical difficulties that
the standard parametrization in (6) can suffer from because of
an extended frequency range and/or high polynomial orders
n,m. As discussed above, we took N1 and N2 in (6) to fit
the available data from 0.2 to 5 Hz. Furthermore, we scaled
the experimental frequency response samples G(jΩi) by jΩi

before curve fitting was attempted so that the resulting trans-
fer function describes exactly the inclinometer dynamics in (1).
This scaling in effect corresponds to scaling G(s), the inte-
grator/inclinometer transfer function, by s, thus canceling the
integrator in the measured frequency response between ω and θt

in Fig. 6.
We now remark on why the gyro bias δ does not affect this

procedure, and how the scaling α can be accurately determined.
First, note that the bias introduces a delta function at s = 0 in
the frequency response and that curve fitting is attempted from
0.2 to 5 Hz so that the bias has no effect on the identification.
Then, note that α has the effect of scaling the experimental
frequency response and the curve fit. Since it is known that the
dc gain of the inclinometer is 1, we simply identify α as the
scaling required to make the resulting curve fit have a dc gain
of 1.

Fig. 7 shows the best-fit transfer functions of varying degrees,
starting with one pole and no zeros (top left), two poles and no
zeros (top right), and two poles and two zeros (bottom). Note
that the first-order model, seen in Fig. 7, is a good fit from about
0.3 to about 2 Hz, but misses the notch apparent in the data at
approximately 3.7 Hz. The bottom plot in the figure shows an
excellent fit within the 0.2–5 Hz range, with identified transfer
function

Gp(s) =
1.024s2 − 0.1791s + 528.4

s2 + 65.86s + 528.4
.

Our identified observer parameters are α1 = 65.86, α2 =
528.4, β0 = 1.024 and β1 = −0.1791. As described previously,
β2 was forced to equal to α2 so that the dc gain of the incli-
nometer is one. We observe that Gp(s) is consistent with (1), and
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Fig. 7. Best-fit transfer functions of varying degrees, starting with one pole and no zeros (top-left), two poles and no zeros (top-right), and two poles and two
zeros (bottom).

Fig. 8. Observer designed from tilt sensor transfer function, two poles and two zeros (left, first 15 s; right, last 5 s).

Fig. 9. Observer’s estimate of the gyro bias during the chirp motion.

less small differences in the high-frequency gain and the small
damping in the numerator (i.e., β0 = 1.024 and β1 = −0.1791
instead of the ideal modeling values β0 = 1 and β1 = 0) are
found. We also remark that the natural frequency of the zeros of

Fig. 10. Experimental setup for horizontal translation.

the model is (
√

528.4/2π) = 3.66 Hz, well within the range of
device, which shows the importance of using the more accurate
model. Finally, the gyro scaling is also identified to have a value
of α = 0.76 based on the approach discussed above.
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Fig. 11. Angle estimate as sensor accelerates with ẍ = ±0.98 m/s2 (left) and with ẍ = ±9.8 m/s2 (right).

Fig. 12. Observer designed from tilt sensor transfer function, with inclinometer placed off the axis of rotation (left, first 15 s; right, last 5 s).

V. EXPERIMENTAL RESULTS

A. Planar Rotation

We first tested the observer design from Section III in the case
of pure rotation of the tilt sensor with zero base acceleration.
The tilt sensor was mounted along the axis of rotation as shown
in Fig. 3. The data from the same chirp signal used for the
system identification in Section IV was input into the observer,
and the tilt angle estimate was compared to the measured tilt
angle. Fig. 8 shows the estimated tilt and the actual angle at
low and high frequencies. For the initial conditions, we set the
estimated angle to be close to the actual angle, but introduced a
significant error in the initial estimate for the gyro bias signal.
This error caused the observed angle to deviate from the true
angle during the first few seconds of the estimator’s transient
response. The last 5 s of the chirp motion shows our observer
tracking a signal of frequencies exceeding 4 Hz. Fig. 9 shows
the estimate of the gyro bias signal to converge to a value of
δ = −2.74◦/s in about 4 s. It also shows that the observed bias
signal varies somewhat during normal operation.

B. Horizontal Translation

The results seen in Fig. 8 are valid for the case when the incli-
nometer rotates without translating. The following experiments
introduce translational acceleration to the inclinometer. For the
first experiment, we fixed the inclinometer and an accelerometer
to a sliding platform oriented to move in the horizontal direction
as shown in Fig. 10. Using a pneumatic actuator, we accelerated
and decelerated the platform in a square wave with (ẍ = ±a, )
creating a smooth back and forth motion (see the translational

motion shown in the lower plots of Fig. 11). Ideally, the observer
should output a tilt angle estimate of zero degrees since the in-
clinometer is not rotating. In Fig. 11, we plot the inclinometer
output, the tilt angle estimate assuming that the acceleration is
zero, and the tilt angle estimate using the the measured accel-
eration signal. In both the figures, we magnified the tilt angle
estimate by a factor of 10 since it was very close to zero. The
figure shows a less than 1◦ deviation from zero for the case when
a = 0.1g (left plot) and less than a 2◦ error for a = 1g (right
plot). In both cases of low and high accelerations, the angle es-
timate was roughly ten times as accurate compared to the angle
estimate based on the assumption that the acceleration was zero.
Also note that the inclinometer is making large oscillations for
the case of 1g accelerations, and the estimator still works well.

C. Translation and Rotation

In the last experiment, we used the original test setup shown
in Fig. 3, with the tilt sensor placed 10 cm from the axis of
rotation. As before, the device was oscillated in a chirp mo-
tion around the 70◦ (from horizontal) position. This motion
created accelerations of the order of 1g in both the x- and
y-directions. The accelerations were due to the angular velocity
and angular acceleration of the rotating arm. Rather than using
the accelerometer, we computed the linear acceleration of the
tilt sensor from the measured encoder signal and its derivatives.
Data from all three sensors were fed to the observer, giving
the results seen in Fig. 12. The plots show that at both low
(<1 Hz) and high (>3 Hz) frequencies, the estimated signal
deviates from the actual signal by no more than 1◦. This result
shows that satisfactory performance of the observer is obtained
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even in the case when considerable translational accelerations
are present in both the x- and y-directions.

VI. CONCLUSION

We have outlined a method for combining data from an in-
clinometer, a rate gyro, and an accelerometer to produce an
accurate angle measurement, even when translational accelera-
tions are substantial. This method involves modeling the sensors
as linear time-invariant systems. The rate gyro is modeled as the
derivative of the angle to be estimated, plus an unknown bias
and scaling. The tilt sensor is modeled as a second-order proper
transfer function from the input angle to the tilt sensor output
angle. The parameters of this transfer function are obtained by
fitting its frequency response to the experimental frequency re-
sponse of the tilt sensor to a chirp motion. Then, an optimal
linear state estimator is constructed that estimates the gyro bias,
and infers the correct angle from the output of all three sensors.
Our method is unique in that it cancels the gyro bias more ef-
fectively than a simple high-pass filter. Furthermore, our more
realistic model of the inclinometer allows for state observation at
higher frequencies than has been reported in previous research.
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