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Short Papers

Accurate Sliding-Mode Control of Pneumatic Systems
Using Low-Cost Solenoid Valves

T. Nguyen, J. Leavitt, F. Jabbari, and J. E. Bobrow

Abstract—A control law is developed for an inexpensive pneumatic mo-
tion control system using four solenoid on/off valves and a position feed-
back sensor. A sliding-mode approach is used, which is well known for its
tolerance for system uncertainties. In contrast to previous control laws,
our approach does not use pulsewidth modulation. The control law has
an energy-saving mode that saves electrical power, reduces chattering, and
prolongs the valve’s life. Our simulation and experimental results show that
the proposed tracking control law performs very well with good tracking
and relatively low steady-state position errors.

Index Terms—Fluid power, pneumatic actuators, pneumatic control,
pulsewidth modulation, sliding-mode control.

I. INTRODUCTION

Pneumatic actuation is becoming more popular recently due to de-
creasing component costs and recent improvements in valve technol-
ogy. Today’s valves are faster, less expensive, and more accurate than
valves made previously. Pneumatic actuators are known for their clean
operation, high force-to-mass ratio, and easy serviceability. In most
previous work, servovalves, rather than solenoid valves, have been
used for pneumatic actuation applications. For example, McDonell and
Bobrow [1], developed a hierarchical feedback linearized controller for
force and position tracking of a pneumatically actuated robot. Surgenor
and Vaughan [2] used a servovalve in conjunction with a sliding mode
control approach to achieve excellent performance. Other researchers
have included the dynamics of the servovalve as part of the control
design to achieve higher performance (see, for instance, Richer and
Hurmuzlu [3] or Richard and Scavarda [4]).

Unfortunately, servovalves like the ones used in the above-
mentioned research are usually expensive because of the high-precision
manufacturing needed to produce them and because of the need for a
built-in orifice area control circuit.With faster andmore accurate valves
now available, solenoid on/off valves can potentially be used to replace
servovalves. One method for controlling systems with solenoid valves
is to use pulsewidth modulation (PWM) to effectively approximate the
flow properties of a servovalve with solenoid valves. As a result, it al-
lows control laws derived for servovalves to be used with on/off valves.
For example, Shen et al. [5] used PWM to create a sliding mode control
signal in conjunction with the so-called “equivalent control” signal [6],
[7] necessary to keep the system dynamics on the sliding surface. Var-
seveld and Bone [8] developed several PWM schemes to effectively
linearize the relationship between the modulator driving voltage and
the load velocity. It was demonstrated in Noritsugu [9] that if this linear
relationship is established, the highly nonlinear pneumatic system will
be easier to control with a higher level of accuracy.

Our approach implements a sliding-mode control law directly with-
out using PWM. Because we do not have PWM, we can not compute
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Fig. 1. Diagram and photograph of cable-actuated cylinder and mass with
position encoder.

and implement the equivalent control signal mentioned above. Our re-
sults demonstrate that the errors caused by this limitation are not large.
In order to develop the controller, we used a sliding surface similar to
that developed by Surgenor and Vaughan [2], along with an analysis
similar to that used by Shen, et al. in [5]. Because we do not rely
on the equivalent control signal, we are able to significantly reduce
valve switching as compared to previous methods. In addition, our
approach conserves both air and electrical power, which is important
for untethered systems [11]. This is also a primary concern for mobile
applications such as the robot of Granosik and Borenstein [10], or in
the monopropellant systems such as that developed by Barth et al. [12].

II. BASIC EQUATIONS OF THE ACTUATION SYSTEM

The pneumatic actuation system used for this research is comprised
of a Tolomatic1 cylinder and four Matrix2 pneumatic solenoid valves
as shown in Fig. 1. The piston is connected to a cable, which drives a
translating mass. The double-acting cylinder has equal areas on either
side of the piston. In order to describe cylinder air flow dynamics, we
assume that we have an adiabatic process, i.e., heat transfer across the
control volume boundary is negligible, and that air is an ideal gas. The
cylinder flow dynamics in chamber A and chamber B of the cylinder
can be approximated by [13] as

ṖA =
r

VA

(RTṁA − PA V̇A) (1)

ṖB =
r

VB

(RTṁB + PB V̇B ) (2)

wherePA , PB are the pressures inside chambersA,B (Pascal),VA , VB

are the volumes of chambers A,B (m3), ṁA , ṁB are the mass flow
rates in chambers A,B (Kg/s), Ts is the temperature of the supply air
(◦K), r is the ratio of specific heats for air (r =

cp

cv
= 1.4), and R is

the universal gas constant (R = cp − cv = 0.287 KJ/Kg/◦K).
If we let L be the length of the cylinder and A be its cross-sectional

area, then the volume VA becomes A(L
2

+ x) and the volume of

1[Online]. Available: http/www.tolomatic.com
2[Online]. Available: http//www.matrix.to.it.default.htm
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chamberB, VB = A(L
2
− x). With these volumes, (1) and (2) become

ṖA =
r

A
(

L
2

+ x
) (RTṁA − APA ẋ) (3)

ṖB =
r

A
(

L
2
− x

) (RTṁB + APB ẋ). (4)

The net mass flow rates into chambers A and B are

ṁA = ṁA in − ṁA out (5)

ṁB = ṁB in − ṁB out. (6)

The mass flow rate of air through the valve is regulated by the air
passage area as the flow through an orifice [14], which is expressed as

ṁ = ṁ(Pup, Pdown) =

×




√
2r

r−1

√
(Pdown

Pup

2
r −Pdown

Pup

r+1
r Cval·S√

T
Pup,

Pdown
Pup

> 0.528(
2

r+1

) 1
r−1

√
2r

r+1
Cval·S√

T
Pup,

Pdown
Pup

≤ 0.528

(7)

where Cval is the valve flow rate coefficient, S is the orifice passage
area (m2), Pup and Pdown are the up and down stream pressures,
respectively, and T is the gas temperature (◦K).

Finally, the dynamics of the piston and the load is simply

Mẍ = A (PA − PB ) − Cvisẋ − Ccoulomb(sign(ẋ)) (8)

where M is the total mass of the load and piston, A is the cylinder
area, Cvis is the viscous friction coefficient, and Ccoulomb is Coulomb
friction.

III. CONTROL DESIGN

In order to facilitate the control law design, a switching scheme for
the four two-way on/off valves shown in Fig. 1 is defined so that the
system will have three modes of operation as follows:

mode 1: chamberAfills, chamberB exhausts, denotedu = 1
mode 2: chamberA exhausts, chamberB fills, denotedu = −1
mode 3: air flow into both chambers is blocked, denotedu = 0.

(9)
Mode 1 and 2 are used for changing the direction of the force on the
piston, and mode 3 is used to save energy and to avoid chattering when
the tracking error is deemed small enough.

Differentiating (8) and using (3)–(7), the system dynamics can be
written as:

...
x=

{
f(z) + b+(z), u = 1
f(z) − b−(z), u = −1
f(z), u = 0

(10)

where z ≡ (x, ẋ, ẍ, PA , PB ), and

f(z) = −Cvis

M
ẍ − Ar

M

[
PA(

L
2

+ x
) +

PB(
L
2
− x

)
]

ẋ (11)

b+(z) =
rRT

M

[
1(

L
2

+ x
)ṁA in +

1(
L
2
− x

)ṁB out

]
(12)

b−(z) =
rRT

M

[
1(

L
2

+ x
)ṁA out +

1(
L
2
− x

)ṁB in

]
(13)

with ṁA in, ṁA out, ṁB in, and ṁB out defined using the notation
in (7) with the supply pressure PS and the atmospheric pressure Patm

creating the flow as ṁA in = ṁ(PS , PA), ṁA out = ṁ(PA , Patm),
ṁB in = ṁ(Ps, PB ), and ṁB out = ṁ(PB , Patm). Now, define the
second-order sliding surface as

s = ë + 2ζωė + ω2e (14)

where e = x − xd is the tracking error. We selected a second-order
surface because (10) is third order, and one derivative of (14) brings
the effect of the control on the dynamics s through

...
e and

...
x . We will

now show that if a valve is used that has a high-enough flow rate,
and the control u is selected so that u = −sign(s), the tracking error
diminishes according to the second-order dynamics as

ë + 2ζωė + ω2e = 0. (15)

Define the Lyapunov-like function

V =
1

2
s2. (16)

The sliding surface s ≡ 0 is reached within a finite time, when the
following condition is enforced [6], [7]

V̇ = sṡ < −η|s| (17)

for some constant η > 0. From (14),

ṡ =
...
e +ë2ζω + ω2ė. (18)

For our system (10), (17), and (18) give

V̇ =

{
s(b+ + γ), u = 1
s(−b− + γ), u = −1

(19)

where γ = f− ...
xd +ë2ζω + ω2ė. Note from (12) and (13) that b+

and b− are positive for all z(t), and that their magnitude can be made
as large as desired by choosing a large valve orifice Cval in (7). We
first assume (we prove this assertion below) that given an η > 0, we
can choose b+ and b− such that

b+ + γ > η (20)

−b− + γ < −η. (21)

Now, if s < 0, with u = −sign(s) = +1, (19) and (20) show that
V̇ = s(b+ + γ) < ηs < 0. If s > 0, (19) and (20) show that V̇ =
s(−b− + γ) < −ηs < 0. In other words, the sliding condition V̇ <
−η|s| is always satisfied.

In order to show that b+ and b− can be selected to satisfy (20)
and (21), we need to show that γ is bounded. We start by noting that
s(0) is bounded, since xd and it derivatives and the initial value for
x and its derivatives are bounded. Then, using the sliding control law,
(17) shows that V̇ (t) < 0, which ensures that V (t) is not increasing
and that s is bounded due to (16). Next, note that (14) establishes a
stable input/output transfer function from s to e. Since for linear, time-
invariant (LTI) systems this implies bounded input/bounded output
(BIBO) stability, e(t) is bounded, so x will remain bounded. Given
bounded PA − PB and friction, (8) is a first-order ordinary differential
equation in ẋ, which due to damping, results in a decaying (and thus
bounded) ẋ and, thus, bounded ẍ. Since we assume that the reference
signal xd and its derivative are bounded, e and its two derivatives are
bounded aswell. The only term left in γ to remain bounded is f [defined
in (11)], which only requires that |x| remains smaller than L/2, which
is a physical limitation of the piston’s motion inside the cylinder.
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Fig. 2. Top: tracking a 0.5-Hz sine wave. Middle: error signal with dead band.
Bottom: control pulses.

In order to reduce control chatter to improve the control law, we
define a “dead band” ε around zero, and if |s| is within this region, the
third mode u = 0 is used to save energy. All the flows are stopped by
closing all the valves in this mode. Because the sign of V̇ is indefinite
in this region, some steady-state error exists. The experimental results
in the next section demonstrate that ε can be selected small enough to
achieve an acceptable level of error without causing unnecessary valve
chatter. In summary, the control law is{

|s| > ε : u = −sign(s)
|s| ≤ ε : u = 0.

(22)

This control law will bring the system to the sliding surface s ≡ 0
in a finite amount of time, which is determined by the magnitude of
η. Once on this surface, the tracking error will decay according to a
second-order dynamic system defined by the constants ζ and ω.

IV. EXPERIMENTAL RESULTS

We tested the control law on the hardware shown in Fig. 1. The
Tolomatic1 cylinder model TC10 SK24 has a 25.4-mm bore and a
610.0-mm stroke. The piston is connected to a cable, which drives
a translating mass of approximately M = 2.0 kg. The four Matrix2

pneumatic solenoid valves, model BX721108C3JJ, which was used to
control the air flow had a response time of approximately 0.007 s, and a
flow rate specification of 80 L/min at a pressure drop of 6 bar. The flow
rate specification was used to determineCval in (7) with the appropriate
operating pressures specified in that formula. We attached a belt-driven
rotary encoder to one of the rotating cable pulleys at the end of the
cylinder to measure the load position. The resolution was 100.1 counts
per millimeter, which is relatively high for the large piston stroke used.
The control law was implemented in Matlab’s real-time workshop on
a P4 PC running at a sampling rate of 500 Hz. The velocity was com-
puted using a backward finite difference of the position signal followed
by a second-order 40-Hz Butterworth filter. The acceleration (also
needed to compute s) was computed in the same way from the filtered
velocity.

After some experimental tuning of the sliding surface parameters,
we obtained some excellent results shown in Fig. 2–5. The sliding
surface used for this was defined by ŝ = ë/ω2 + ė2ζ/ω + e, where
ζ = 0.15, and ω = 40 rad/s. For these results, the dead band ε = 1.0
was used with the scaled surface ŝ rather than s. We found that this
scaling made it easier to choose ω, ζ, and ε, from the experimental
response as follows. When we increased ζ above the stated value of
ζ = 0.15, the control seemed to work fine in terms of tracking error,

Fig. 3. Top: attempt at tracking a 4.5-Hz sine wave. Middle: error signal.
Bottom: control signal is saturated throughout the motion.

Fig. 4. Top: step response. Middle: error signal with dead band. Bottom:
valves do not pulse significantly.

Fig. 5. Top: step response. Middle: small error signal. Bottom: valves pulse
more frequently to stabilize with small dead band.

but it chattered more. The problemwas that ζ is a coefficient of ė on the
sliding surface, so that noise in ẋ is amplified with a large ζ. Similarly,
we used a relatively high value for ω = 40 rad/s, because this means
that 1/ω2 is small and so, the errors in ë of ŝ are not amplified as much
as would be with a lower ω. Also, since the position-error term in ŝ
has a coefficient of 1, for a constant input at steady-state, ŝ = e. This
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means that the steady-state error is then directly defined by the value
of ε in whatever units are used to measure the system position.

Fig. 2 shows the tracking performance of a low-amplitude±20-mm
sine wave at 0.5 Hz. The dead-band chosen seemed to give a nice trade-
off between excessive control action and position error. Remarkably,
even though the motion is continuously changing, the valves do not
seem to pulse excessively. We also varied the mass M for this experi-
ment from 50% to 400% of its nominal value, and found the resulting
motion to be nearly identical to this plot.

The limitation in bandwidth is demonstrated in Fig. 3, where we
see that for a 4.5-Hz sine wave reference trajectory, the valves are
continuously on in either direction and are unable to produce the flow
needed to satisfy the sliding condition. That is, our assumptions in (20)
and (21) are not satisfied. Another indication of the performance is the
step response as shown in Fig. 4, which also has ε = 1.0. Note that
good results were obtained without requiring too much pulsing from
the valves.

Finally, Fig. 5 demonstrates that very tight position accuracy of about
±0.1mmcan be achieved at the expense of considerable control action.
In this case, the dead band was reduced to ε = 0.2. Although this high
position accuracy is often desirable, it comes at the expense of extra
electrical power consumption in the valves and extra flow from the air
supply. This is because each time a solenoid valve opens, electrical
energy is used in the solenoid, and extra air flows from the supply to
the system.

V. CONCLUSION

By developing a simple sliding-mode control law, we have used
inexpensive components to create a pneumatic actuation system that
performs very well. We have demonstrated that the approach only
needs simple on/off valves and a position sensor to be implemented.
Robustness is achieved with our approach due to its high tolerance for
uncertainties in the system dynamics. In addition, the control law only
switches the on/off valves when necessary and, therefore, prolongs the
valve life and increases the overall reliability of the hardware.
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Systematic Modeling for Free Stators of Rotary
Piezoelectric Ultrasonic Motors

Hamed Mojallali, Rouzbeh Amini, Roozbeh Izadi Zamanabadi,
and Ali A. Jalali

Abstract—This paper presents an equivalent circuit model with complex
numbers that describes the free stator model of traveling-wave ultrasonic
motors. The mechanical, dielectric, and piezoelectric losses associated with
the vibrator are considered by introducing the imaginary part to the equiv-
alent circuit elements. The determination of the complex circuit elements is
performed by using a new, simple iterative method. The presented method
uses information about five points of the stator admittance measurements.
The accuracy of the model in fitting to the experimental data is verified by
using the measurements of a recently developed piezoelectric motor and a
well-known USR60.

Index Terms—Equivalent circuit, modeling, ultrasonic motor.

I. INTRODUCTION

The advantages and various applications of traveling-wave ultra-
sonic motors (USMs) have attracted more research attention, com-
pared to the other types of USMs [1]. The driving principle of the
traveling-wave USM is based on generating acoustic traveling waves
in the stator and producing an elliptic motion of the particles at the
surface of the stator and, hereby, driving the rotor by means of friction.
Thus, deriving the model of the stator is the first step of the modeling
process, which is helpful in order to estimate the electromechanical
characteristic of the whole motor and the power supply design for
USM. Existing approaches for modeling of USMs are mainly based on
equivalent circuit method [1]–[4], analytical approaches [5], or finite-
element method (FEM) [6]. Although FEM provides the possibility
of a precise study on different mechanical parts of the motor, it is in-
convenient due to computational cost. Likewise, electrical parameters
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