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Abstract

In this article, we examine the solution of minimum-effort optimal
control problems for open-chain manipulators. An approximate
solution to the optimal control problem is determined by a con-
strained parameter optimization over a set of B-spline basis func-
tions. We demonstrate that the parameter-optimization formulation
of the problem is numerically ill-conditioned, and that it is there-
fore essential to include analytic, or exact, gradients of the objective
function and the constraints in order to guarantee a solution. A re-
cursive expression for these gradients is developed for general serial
chains. Constraints on end-effector motions are taken into account
using the logarithm of the spatial displacement. Our formulation re-
lies on the use of matrix exponentials for the manipulator kinematics,
dynamics, and task constraints. Several examples are presented that
demonstrate the power and flexibility of our approach.

1. Introduction

Previous research on the optimal control of robotic systems
has been hampered by the complexity of the nonlinear equa-
tions of motion, and the difficulty of satisfying the neces-
sary conditions for optimality. In this paper we present an
approach that we have successfully applied to a number of
challenging problems in the optimal control of open chains.
For our approach, like some others, we parameterize the joint
trajectories to transform the optimal control problem into a
discrete parameter optimization. Unlike other approaches,
we determine the analytic gradient of the objective function
and the constraints in a manner that can be applied to general
open chains. Also unlike others, we show that task-based end-
effector constraints can be handled naturally with exponential
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coordinates (Park and Brocket 1994). Although SE(3) is not
globally homeomorphic to<6, an advantage of exponential
coordinates is that the Jacobian of the map from<6 to SE(3)
is globally nonsingular.

Much early research on optimal control of robot motions
used the minimum-time criterion (Kahn and Roth 1971; Bo-
brow, Dubowsky, and Gibson 1985; Shin and McKay 1985).
Several researchers (Bobrow 1988; Dubowsky, Norris, and
Shiller 1986) parameterized the geometric path with splines,
and used a discrete parameter-optimization approach to find
minimum time paths that avoid obstacles. Further work in this
direction added energy to the cost function (Shiller 1994) and
also actuator dynamics (Pledel and Bestaoui 1995). Geering
and colleagues (1986), and later, Bryson and Meier (1990),
solved the general time-optimal control problem for a two-link
arm following an unspecified path. Both researchers noted
the difficulty of applying numerical shooting methods, and
resorted to a parameter-optimization approach.

Other performance measures such as effort, energy, and
the time derivative of the control torques have been consid-
ered in the literature (Chen, Cheng, and Sun 1994; Mal-
ladi et al. 1992; Suh and Hollerbach 1987; Hu, Teo, and
Lee 1994). These performance measures result in smooth,
natural-looking motions that reduce wear and tear on the robot
when compared to time-optimal motions (Kenjo and Nag-
amori 1986). Žefran, Kumar, and Yun (1994) considered a
two-arm robot system holding an object, and directly solved
the two-point boundary-value problem that arose from the
maximum principle (Pontryagin et al. 1962). They also noted
the difficulty in obtaining the gradient of the dynamics. In a
later work (Žefran and Kumar 1995), they extended the prob-
lem to handle unilateral constraints, and used a variational
approach to develop a finite-difference solution.

Many researchers have recognized the utility of using a
polynomial parameterization of the robot-joint trajectories to
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convert the optimal control problem into a discrete, nonlin-
ear parameter optimization. With this approach, one guesses
an initial motion that satisfies the constraints, and adjusts the
spline parameters in search of an optimum. The constraints
are usually obstacles in the workspace, joint limits, and con-
straints on end-effector motions. One of the main advantages
is that even if a nonoptimal path that satisfies the constraints
has been found, it is still a valid, or feasible, trajectory. Gilbert
and Johnson (1985) used uniform B-splines to parameterize
the motion of a body moving in a plane in the presence of
obstacles. They demonstrated that minimum energy motions
can be found reliably with a large number of path parameters.
A subsequent paper (Gilbert and Ong 1994) extended the basic
approach to solve path-planning problems. In the work of Lu
(1992), the difficulty of obtaining gradients for Gilbert’s ap-
proach (applied to flight-vehicle trajectory optimization) was
discussed, and an approximate scheme was developed. Other
researchers (Tabarah, Benhabib, and Fenton 1994; Field and
Stepanenko 1996; Ozaki and Lin 1996; Park 1997) have used
splines with varying degrees of success. All of the above-
mentioned papers discuss the need for exact gradients of the
objective function.

An important topic related to our work is kinematic redun-
dancy resolution and path planning for specified end-effector
tasks. Several efficient global approaches have been devel-
oped for kinematic redundancy resolution (Wang and Chen
1991; Kazerounian and Wang 1988; Kim, Park, and Lee 1994;
Martin, Baillieul, and Hollerbach 1989) using a variational
approach for their solution. Dynamics was added to the prob-
lem for a 3-R planar robot by Ma (1996). Seereeram and Wen
(1993, 1995) added obstacle avoidance to the redundancy-
resolution problem, where joint rates were considered to be
the control variable. All of these approaches require ana-
lytic gradients of the cost functional. An interesting aspect
of these papers is that each seems to use a different form for
the end-effector orientation constraint (Angeles, Rojas, and
Lopez-Cajun 1988).

The foundation of our approach is the use of product-of-
matrix exponentials (POE) to represent the manipulator kine-
matics. Although other formulations of the kinematics and
dynamics could have been used, the POE-based approach
makes it easier to express the problem for general open chains,
since joint motions are represented in terms of screw mo-
tions, which include either rotational or prismatic joints, with
the form of the equations identical in either case (Park, Bo-
brow, and Ploen 1995). The manipulator dynamics are com-
puted from a modified version of Newton-Euler dynamics,
expressed in terms of products of matrix exponentials.

We determine an approximate solution to the optimal con-
trol problem by a constrained parameter optimization on a
set of B-spline basis functions. We then demonstrate that the
standard parameter-optimization formulation of the problem
is numerically ill-conditioned. While it is possible to opti-
mize many objective functions by estimating the gradients (Lu

1992), poorly conditioned problems require analytic gradi-
ents. These exact gradients allow the optimization algorithm
to quickly converge to a local minima that might otherwise
not be found. Computation of the gradient of the cost func-
tion requires derivatives, or sensitivities, of the equations of
motion with respect to the joint variables. These sensitivities
have also been developed by other researchers (Balafoutis,
Misra, and Patel 1986; Murray and Neuman 1986; Balafoutis
and Patel 1991), and could have been used for the present
work. However, our formulation provides additional insight
into the problem, since we are able to represent end-effector
task constraints in exponential coordinates, and obtain ana-
lytic expressions for the gradients of these constraints. These
constraint sensitivities have not been presented previously in
the literature.

2. Minimum-Effort Optimal Control

Consider ann-degree of freedom, possibly redundant, open-
chain manipulator. The minimum-effort optimal control
problem for this system is

minimize
τ(·) J (τ ) = 1

2

tf∫
0

||τ ||2dt, (1)

subject to M(q)q̈ + h (q, q̇) = τ, (2)

q ≤ q(t) ≤ q, (3)

q(0) = q0, q̇(0) = 0, (4)

q(tf ) = qf , q̇(tf ) = 0, (5)

where eq. (2) is the equation of motion for the open chain
with the joint coordinatesq ∈ <n and the joint forces or
torquesτ ∈ <n; M(q) is then×n inertia matrix; andh(q, q̇)

is the vector of Coriolis, gravity, and friction terms. Con-
straints on joint displacements are represented by eq. (3),
whereq, q ∈ <n are assumed to be given for a particular
manipulator. While the problem is formulated with the final
time tf fixed, we give an example that shows how our ap-
proach will find the optimal final time if it is less than the
specifiedtf . In addition to the constraints of eqs. (2)–(5), we
also consider task-dependent constraints on the end effector.
For these constraints, the end effector is required to trace a
given path in space, with or without a prescribed orientation.
This constraint is represented ask equality constraints of the
form

g̃j (q(t), c(t)) = 0, j = 1 . . . k, (6)

wherec(·) is a curve in space that includes both position and
orientation information about the desired end-effector posi-
tion, and we assume thatg̃j (q(t), c(t)) is continuously differ-
entiable. These constraints are specified directly in exponen-
tial coordinates, and are discussed in more detail in Section
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4. (See Park’s [1991]) work for a discussion of exponential
coordinates.)

For our approximation to the solution of the optimal con-
trol problem, we assume that the joint coordinates are pa-
rameterized by cubic B-splines (De Boor 1978) in all of the
examples in this paper. The B-spline curve depends on the
blending, or basis, functionsBi(t), and the control points
P = {p1, ..., pm}, with pi ∈ <n. The joint trajectories then
have the formq = q(t, P ) with

q(t, P ) =
m∑

i=1

Bi(t)pi . (7)

The control pointspi of the spline only have a local effect on
the curve geometry (Faux and Pratt 1979, ch. 6), so given any
t , there will be a maximum of four nonzeroBi(t) in eq. (7)
for a cubic spline. In addition, the convex-hull property of
B-splines makes them useful for smoothing or approximating
data. The fact that

∑m
i=1 Bi(t) = 1 also gives the desirable

property thatlimits on joint displacements translate directly
to limits on the spline parameterspi. That is, if there is a joint
limit of the formq ≤ q, and one constrainspi ≤ q, then

q =
m∑

i=1

Bi(t)pi ≤
m∑

i=1

Bi(t)q = q.

The parameter optimization equivalent of the original
minimum-effort problem is

minimize
P

J(P ) = 1

2

tf∫
0

||τ(t, P )||2dt, (8)

subject to q ≤ pi ≤ q, i = 1 . . . m, (9)

gj (q(t, P ), c(t))=0, j =1 . . . k. (10)

With this approach,τ = τ(t, P ), becauseq, q̇, andq̈ all are
given functions oft andP from eq. (7) and its time derivatives,
soτ is an explicit function of the spline parameters through
eq. (2). By the proper choice of the spline basis functions at
both ends of the joint trajectory, the path-end conditions, eqs.
(4) and (5), can be satisfied by keeping the outer two pairs of
spline-control points constant.

If one does not consider the end-effector curve-tracing
constraint (eq. (10)), we have converted the original prob-
lem into a parameter-optimization problem with no nonlinear
constraints, and efficient quasi-Newton algorithms can then
be used to solve the problem. However, for assured conver-
gence of these algorithms, two conditions must be met: the
second derivatives ofJ (P ) must be bounded, and every ap-
proximate Hessian (found, for example, from a BFGS update
[Luenberger 1989]) used in the quasi-Newton algorithm must
remain positive definite with bounded condition number (Gill,
Murray, and Wright 1981).

Unfortunately, for problems that are ill-conditioned to be-
gin with, approximate finite-difference gradients can lead to
an unbounded condition number of the approximate Hession
of J (P ), and the algorithm will fail. We experienced this
problem firsthand at the beginning of this research: our opti-
mizations would terminate prematurely when we used finite-
difference gradients. A more-complete discussion of the
problems associated with finite-difference gradients is given
by Gill and colleagues (Gill, Murray, and Wright 1981; Gill
et al. 1986) and their references. Due to the complexity of
the dynamic equations of motion, most nontrivial solutions
to optimal control problems for robotic systems presented in
the research literature use finite-difference gradient approxi-
mations. In the following sections, we give explicit formulas
for the gradients ofJ andg, which can be applied to general
open chains.

3. Optimization of Unconstrained Motions

The first problem we consider is a minimum-effort motion
with no constraint on the motion of the end effector, so that
k = 0 in eq. (10). For any given parameter vectorP, the joint
torques can be computed efficiently with a modified recursive
Newton-Euler dynamics algorithm based on the product-of-
exponentials (POE) kinematic representation, shown in Fig-
ure 1 (Park and Bobrow 1994). The notation used for the algo-
rithm is defined in Appendix A. Aside from its coordinate-free
geometric interpretation, an advantage of this POE-based al-
gorithm is that the joint coordinatesqi appear explicitly in the
equations in thesame formfor revolute or prismatic joints.
Because matrix exponentials are used to represent the joint-
to- joint transformations, it is trivial to differentiate them with
respect to joint displacements. One can then compute joint
torques and their derivatives with the same computer source
code for any open-chain robot.

3.1. The Recursive Gradient Formulation

To compute the gradient of the cost functional, we note that

∇P J =
tf∫

0

τT · (∇P τ) dt. (11)

The most significant step for this gradient is computing the
derivatives of the joint torques with respect to the path param-
eters,P . We compute these derivatives analytically by dif-
ferentiating the recursive dynamics shown in Figure 1. The
details of this derivation are provided in Appendix A. The
resulting recursive algorithm for the gradient is shown in Fig-
ure 2. Alternative approaches have been developed for the
linearizationof the dynamics equations that result in a simi-
lar algorithm. Balafoutis and Patel (1991) provide a complex-
ity analysis of a recursive algorithm to compute a linearized
model of a manipulator with revolute joints.
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Fig. 1. The POE-recursive Newton-Euler inverse-dynamics
algorithm.

Fig. 2. The POE-recursive derivative Newton-Euler inverse
dynamics algorithm.

The objective function in eq. (8) and its gradient were inte-
grated numerically, using the trapezoidal rule with a constant
number of integration steps. Although weapproximatedthe
integral inJ (P ) with a fixed-step-size integrator, the gradi-
ents of the approximated integral wereexact, since the same
integration steps were used in the computation of the gradient
in eq. (11).

3.2. Examples

Using the above algorithms, we compute minimum-effort mo-
tions on planar and spatial open chains using the sequential
quadratic programming (SQP) optimizer, NPSOL (Gill et al.
1986). Two examples of open chains are first considered—a
two-joint planar arm, and a 5R planar model of a weight lifter.
Each example is given 1 sec to perform a point-to-point mo-
tion, with the additional requirement that the joint velocities
are zero at the endpoints.

The two-joint planar arm was modeled as two thin rods
of similar masses and lengths (0.25 m, 0.5 kg), following a
path consisting of a uniform, cubic B-spline with seven knots.
Figures 3–5 show stop-frame motion at constant time inter-
vals of the original path, the optimized path without gravity,
and the optimized path in the presence of gravity. The origi-
nal path uses the most effort at the beginning of the motion,
accelerating against the forces of gravity, whereas the final
paths store kinetic energy in a swinging motion and then use
that energy to move up toward the final position. The costs
for these motions wereJ = 3.74 for the initial motion with
gravity, andJ = 1.36 for the final motion with gravity. The
optimization took approximately 40 sec to compute on an SGI
Indigo 2 running at 150 MHz.

As a more-interesting example, we examine a 5R planar
model of a weight lifter. The person is approximately 5-ft,
10-in (1.9 m) in height, and 80 kg (calves 0.52 m, 14 kg;
thighs 0.42 m, 26 kg; torso 0.48 m, 30 kg; upper arm 0.29 m,

Fig. 3. The 2R planar open chain, original path.

Fig. 4. The 2R planar open chain, no gravity path.

Fig. 5. The 2R planar open chain, gravity path.
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6 kg; and forearm 0.33 m, 4 kg), and is lifting a pair of 100-kg
weights in a standard gravity field.

The initial, improper, lifting technique is shown in Fig-
ure 6, and the final lift is shown in Figure 7. All joints had
equal weighting in the cost functional, and the back produced
most of the torque load in the original lift. This load was
taken up more by the legs in the optimized lift. Figure 8
shows that the integral of the cost function was reduced by
an order of magnitude from the original. The major savings
in effort came from reducing the torque applied at the begin-
ning of the motion by the back, and the torque applied in the
middle of the motion by the shoulders. Of course, the lifter
also passes the weights through its knees, which points out the
need for adding barrier avoidance to the optimization prob-
lem. The path for this problem was a 5-knot, uniform cubic
B-spline. The initial and final costs for the weight lifter were
2.25 × 107 and 1.44 × 106, respectively. The optimization
took approximately 120 sec to compute.

In this example,all the joint parameters were specified in
the initial and goal configurations. In the next section, we
specify only the desired Cartesian position of the initial and
final weight locations, and allow the redundant weight lifter
to choose the initial and final values of the joint angles while
satisfying the Cartesian constraints. More reduction in total
cost is expected for this case, since the lifter has freedom to
choose an initial pose to minimize torque requirements.

4. Optimal Robot Motion for Constrained End-
Effector Tasks

In this section, we look at the problem of producing minimum-
effort motions for tip-based tasks. These tasks consist of tra-
jectories in SE(3) that the robot end effector is required to fol-
low. The end-effector frame can be written from the forward
kinematics as the concatenation of the link transformations
(Park, Bobrow, and Ploen 1995; Brockett 1984; Murray, Li,
and Sastry 1994):

Fig. 6. The 5R planar open chain, original path.

Fig. 7. The 5R planar open chain, optimized path.

Fig. 8. The integral of the cost function over time for the initial
and final paths (5R planar).

T0,tip = M1e
S1q1M2e

S2q2 · · · Mne
SnqnMtip, (12)

whereMi is a constant-matrix transformation between link
frames,Si is the joint screw written in theith link frame, and
qi is the joint variable. Recalling that the joint positions are
defined byq = q(t, P ), assume for the following discussion
that the end-effector frame is written in the form

T0,tip(t, P ) =
[

2(t, P ) b(t, P )

0 1

]
, (13)

whereT0,tip ∈ SE(3) is a 4×4 homogeneous transformation,
2 ∈ SO(3) is a 3×3 rotation matrix, andb ∈ <3 is a position
vector. The desired end-effector frame location is represented
similarly,

Td(t, Pc) =
[

2d(t, Pc) bd(t, Pc)

0 1

]
, (14)

wherePc is a set of B-spline parameters that define the desired
end-effector position and orientation,bd and2d. Using the
relation[wd ] = logθd, so that2d = e[ωd(t,Pc)], it is apparent
that one parameterization of the desired orientations of the
end effector in SO(3) can be obtained by specifying a smooth
curve forωd(t, Pc) ∈ <3. The desired end-effector motions
on SE(3) can then be parameterized with cubic B-spline con-
trol points,Pc. Three curves were used to define the desired
translational motion of the end-effectorbd(t, Pc), and three
curves were used to define the desired rotational motion of
the end-effectorωd(t, Pc). For general motions on SE(3), the
six independent closure-constraint equations are:

g(t, P , Pc) =
[

log(2T
d (t, Pc)2(t, P ))

b(t, P ) − bd(t, Pc)

]
= 0. (15)
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Note that if2 = 2d in eq. (15), then log(I ) = 0, so the
constraints on orientation would be satisfied. For2 6= 2d,

a smooth-orientation error term is generated that represents a
screw motion between the two orientations.

One difficulty with eq. (15) is that it does not represent a
single spatial constraint, but instead is a continuous constraint
over all t ∈ [0, tf ]. Several algorithms have been developed
to optimize objective functions with thesesemi-infinitecon-
straints. The optimizers use the constraint minima, maxima,
and a few interior points to characterize critical information
about the constraints. Some early examples were developed
by Hettich (1979, 1986) and by Polak (Polak and Tits 1979;
Polak and He 1991, 1992). Recently, work by Panier and
Tits (1989) has been implemented in the Matlab optimization
toolbox as “semiinf.m.”

Rather than apply the relatively complicated algorithms for
handling the semi-infinite constraints, we chose to enforce the
constraints at a finite number of pointstk ∈ [0, tf ], and rely
on the continuity of the B-splines to ensure that the constraints
are approximately satisfied between thetk. We enforced the
constraints at 2m points (m is the number of control points)
uniformly spaced in[0, tf ] for the examples given in this re-
search. The software package NPSOL solves the SQP prob-
lem by choosing the iterates so that they move along a linear
approximation to the nonlinear-constraint surfaces. Hence, it
is essential to provide exact gradients of the constraints of eq.
(15) to form the linear approximation with accuracy.

4.1. Gradients of the Constraints

Consider the position portion of the constraints from eq. (15):

gp = b − bd = 0, (16)

where the subscript ingp denotes position.
The gradient of these constraints is

∇P gp(t, P , Pc) = ∇P (b − bd) = Jb(t, P )(∇P q), (17)

whereJb(t, P ) is the bottom half of the manipulator Jacobian,
as defined by (

ω

v

)
= J q̇ =

[
Jt

Jb

]
q̇. (18)

The Jacobian can be easily obtained from the following
procedure (Murray, Li, and Sastry 1994). Let

Ti,j = Mi+1e
Si+1qi+1 · · · Mje

Sj qj ,

then

J = Ṫ T −1 = [
AdT0,1S1 AdT0,2S2 · · · AdT0,n

Sn

]
,

(19)

where the columns ofJ are elements of SE(3) arranged as six
vectors.

Next we examine the orientation constraints for partially
and fully constrained orientations.

4.2. Relaxed Orientation Constraints

The orientation portion of the constraint defined in eq. (15)
provides three independent equations that fully constrain the
orientation of the end effector. If one relaxes the full orienta-
tion constraint to allow for cases where the direction of only
one axis of the end effector is specified and the remainder are
free, these equations must be altered. This type of constraint
is most useful when the end effector is required to remain
normal to a curve or surface during the motion. If we assume
that the end-effectorz-axis is required to align with a desired
ẑ-axis, but is free to rotate around it, then the constraint is
equivalent to the equation

2 = 2d e[ẑ]α, (20)

whereα is any scalar and̂z is a unit vector. Multiplying by
2T

d and taking the matrix logarithm yields

log(2T
d 2) = [ẑα] = [(0, 0, α)], (21)

so this constraint is equivalent to setting the first two terms
of ωd to zero. This approach can be applied to any direction
in the end-effector frame by adding an additional constant
transformation to the end effector that aligns thez-axis with
the desired direction.

4.3. Orientation-Constraint Gradient

To compute gradients of the orientation constraints in eq.
(15), it is necessary to compute the gradient of the matrix
log function. Assume that[h] = log(2T

d 20,tip) ∈ so(3) and
20,tip = 2M1e

ω1q12M2e
ω2q2 · · · 2Mne

ωnqn2Mtip
∈ SO(3),

with qi = qi(t, P ). In Appendix B, it is shown that

∇q h = Q−1
h

[
Ad2T

d 20,1
ω1 · · · Ad2T

d 20,n
ωn

]
, (22)

where

Qh = I + 1 − cosh

h2
[h] + h − sinh

h3
[h]2. (23)

4.4. The Optimization Algorithm

We now summarize the optimization algorithm using the
equations derived previously:

Algorithm MinEffort.
Given an open-chain robotR, a Cartesian path
(bd(t, Pc), ωd(t, Pc)), and the constraint equation
g(t, P , P c), compute the minimum-effort robot mo-
tion as follows:

Initialization.

1. At the initial time,t = 0, find the joint displace-
ments that minimizegT g. That is, produce a local
solutionq∗(0) to the inverse-kinematics problem.
Defineq0 = q∗(0).
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2. Produce a set of pointsqi corresponding to uni-
formly spacedti , which satisfies the equation
g(ti , qi, Pc) = 0, using the following iterative
process starting withi = 1:

(a) using the minimum-norm pseudoinverse Ja-
cobian and the initial conditionq(0) = qi−1,

integrate the equatioṅq =J+ d
dt

(
bd(t, Pc)

ωd(t, Pc)

)

until either a singularity is reached, ort =
ti+1;

(b) seti = i + 1; and

(c) if g(ti , qi, Pc) 6= 0, solve the minimization
problem in step 1 forqi = q(ti), starting
from qi−1.

3. Construct the cubic interpolating B-spline from
the joint displacements(qi, ti).

Step ObjConst.

1. Compute the objective functionJ = 1
2

∫ t1
t0

τT τdt ,
whereτ is computed using the recursive Newton-
Euler equations from Figure 1.

2. Compute thek-constraint functionsg(ti , P , Pc).

Step ObjConstGrad.

1. Compute the objective gradient∇P J =∫ t1
t0

τT ∇P τdt , where∇P τ is computed using the
recursive Newton-Euler derivative formula in Fig-
ure 2.

2. Compute the constraint gradient from eqs. (22)
and (23)

4.5. Examples

The weight lifter problem was solved again without specifi-
cation of the initial joint angles, but with the addition of a
Cartesian constraint on the initial position of the weights. For
this case, at the initial timet = 0, the end-effector constraint
had the same form as in eq. (15). There was no constraint
on the end-effector motion at instants between the initial and
final times. Figure 9 shows the new 200-kg, minimum-effort,
1-sec motion, with a cost of 9.25× 105 as compared to the
14.4 × 105 cost from the previous optimal solution shown in
Figure 7. This looks a lot like the Olympic lift, the “snatch.”
The only difference is that in the snatch the lifter pauses with
the weight over his head before lifting with the legs.

Figures 10–12 demonstrate another interesting feature of
our approach to solving the optimal control problem. If the
final time tf specified islonger than that needed for the
minimum-effort motion, the algorithm finds thetf needed
for the free final-time problem. That is, the optimal motions
will come to rest before they reach the specified final time.

Fig. 9. A 200-kg lift with initial repositioning.

Fig. 10. A 40-kg lift, free end-time path with initial position
reconfiguration,tf = 2.5 sec,J = 5.15× 104.

Fig. 11. A 40-kg lift, local minimum withtf = 2.0 sec,J =
1.76× 104.

Fig. 12. A 40-kg lift, local minimum withtf = 3.5 sec,J =
1.77× 104.

Figure 10 shows a 40-kg minimum-effort lift for the free end-
time problem. In this case, a 4-sec initial motion is specified,
and the final motion is completed in 2.5 sec with a cost of
5.15×104. Figure 11 shows another local minimum solution
to this problem, which completed in 2.0 sec with a cost of
1.76× 104. The last example in Figure 12 is a similar local
minimum, but there is an extra oscillation in the motion. The
motion time for this case was 3.5 sec, with a cost of 1.77×104.

Almost all of the examples in this work had high condi-
tion numbers for the approximate Hessian generated during
the nonlinear parameter optimization. This means that the
optimization would be difficult to solve without exact gradi-
ents. As a typical example, Figure 13 shows the condition
number of the approximate Hessian matrix generated during
the optimization process for the problem of Figure 10, versus
the iteration number. The same plot shows the value of the
objective function,J . One reason for the poor conditioning
in these problems is that some regions during the motion re-
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quire large torques, such as the acceleration and deceleration
phases, while other regions require little or no torques. The
B-spline parameters in the high-torque regions have much
greater effect onJ than those in the low-torque regions.

Figures 14–16 show the original and optimized motions
for a Mitsubishi PA-10 robot tracing a planar path. The orig-
inal motivation for this problem was that the arm is to be
mounted to an undersea vehicle and used for the inspection
of welds. Because the entire vehicle is powered electrically,
it is essential to conserve energy. The energy consumed by
the robot is given approximately by the cost function of eq.
(8), since torque is proportional to current. This robot has
seven revolute joints, and is tracing the curve shown with a
specified orientation with respect to the path. The original
motion shown in Figure 14 had a cost ofJ = 5.02 × 103,
and the optimized motion shown in Figure 15 had a cost of
4.61× 103. If one allows the base position to be a parameter
for the optimization, the same operation could be performed
as shown in Figure 16 for a cost of 1.15×103. An interesting
feature of the last solution found is that the base of the robot
was placed in a location that required very little torque from
the robot’s base joints, which are the most difficult to move.

Fig. 13. Condition number of Hessian and cost function versus
iteration number for the problem in Figure 10.

Fig. 14. The Mitsubishi PA-10 7-DOF arm tracing a path.

Fig. 15. The Mitsubishi PA-10 7-DOF arm tracing a path with
optimized effort.

Fig. 16. The Mitsubishi PA-10 7-DOF arm tracing a path with
optimal base location.

5. Conclusion

By using B-splines to reformulate the minimum-effort op-
timal control problem as a discrete parameter-optimization
problem, and by using the matrix exponential formulation of
the kinematics and dynamics of open-chain mechanisms, we
have developed a new approach to motion optimization of
open chains with end-effector constraints. We have shown
that to reliably obtain local minimizers of the objective func-
tion, exact gradients of the dynamics and the constraints are
needed, owing to the inherent ill-conditioning of the problem.
We have developed efficient, recursive, analytic expressions
for these gradients of the dynamics of general open chains.
Our examples have reliably produced results for minimum-
effort motions of open chains with complex nonlinear dy-
namics, time-varying constraints, and redundant degrees of
freedom. The new motion-optimization software provides a
powerful tool for the analysis and design of articulated sys-
tems.

Appendix A: Notation and Derivation of the Re-
cursive Derivative

Standard mathematical notation applies whenever possible in
this text. In particular, the gradient operator∇x , when applied
to a scalar, results in a row vector the dimension ofx:

∇x τi =
[

∂τi

∂x1

∂τi

∂x2
· · · ∂τi

∂xm

]
, (24)

and the gradient of the vector-valued function is a matrix:

∇x τ =




∂τ1
∂x1

∂τ1
∂x2

· · · ∂τ1
∂xm

∂τ2
∂x1

∂τ2
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· · · ∂τ2
∂xm

. . . . . . . . . . . . . . . . . . .
∂τn

∂x1

∂τn

∂x2
· · · ∂τn

∂xm


 . (25)
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For the algorithm in Figure 1,Vi is the six-dimensional
generalized velocity of linki, expressed in the coordinates of
link i, Si ∈ se(3), and

Ji =
[

Ii − mi[ri]2 mi[ri]
−mi[ri] mi · l

]
(26)

is the 6×6 “inertia” matrix, whereri is a vector from the origin
of the link-i frame to the center of mass of linki. A vector
variable in brackets ([r] wherer ∈ <n) is taken as the skew-
symmetric matrix formed by using the vector to represent the
free parameters of the matrix.

Notation and Operators

Thespecial Euclidean group, or SE(3), is a Lie group corre-
sponding to the homogeneous transformations on<3, so that
for G ∈ SE(3),

G =
[

2 b
0 1

]
. (27)

The Lie algebra associated with SE(3) is referred to as se(3),
whereg ∈ se(3) has the form:

g =
[

[ω] v

0 0

]
. (28)

The spatial rotations represent a subgroup of SE(3), and
are referred to as thespecial orthogonal groupSO(3), and its
associated algebra so(3).

We refer to elements of the Lie group by capital letters,G

or H typically (or T , where it matches the accepted use for
homogeneous transformations), and the associated member
of the Lie algebra by the matching lowercase letters. An
element of the Lie group can be used as a linear mapping on
the Lie algebra, and this is called theadjoint mapon SE(3).
It is commonly denoted by Ad, and is given by

AdG(h) = G h G−1, (29)

for G ∈ SE(3),h ∈ se(3), whereh is in the 4× 4 matrix form
of eq. (28). Similarly, the Lie algebra can be used as a linear
mapping on itself, denoted by ad, which is also called theLie
bracket. The Lie bracket has the form

adg(h) = [g, h] = gh − hg, (30)

for g, h ∈ se(3).
The dual adjoint is a mapping on the space of wrenches,

where the dual valueg is denoted byg∗. Where a screw has
the form of eq. (28), the dual screwg∗ = (w, f ) has the 4×4
matrix representation

g∗ =
[

[f ] w

0 0

]
.

The adjoint and dual-adjoint mappings may be represented
as either 4× 4 matrices or as operations on the vector form

of se(3) and se∗(3), which have the following forms:

AdG(h) =
[

2 0
[b] 2 2

] [
ωh

vh

]
,

Ad∗
G(h∗) =

[
2T 2T [b]T

0 2T

] [
ωh∗
vh∗

]
,

adg(h) =
[ [ωg] 0[

vg

] [ωg]
] [

ωh

vh

]
,

ad∗
g(h

∗) =
[

[ωg]T [
vg

]T
0 [ωg]T

] [
ωh∗
vh∗

]
,

whereG = (2, b), g = (ωg, vg), andh = (ωh, vh).
The matrix exponential and logarithm both admit a closed-

form expression as mappings between SE(3) and se(3). The
matrix exponential (Park 1991) can be computed thus:

exp

[ [ω] v

0 0

]
=

[
exp([ω]) Av

0 1

]
, (31)

where

φ = ||ω||,
A = I + 1 − cosφ

φ2
[ω] + φ − sinφ

φ3
[ω]2,

exp([ω]) = I + sinφ

φ
[ω] + 1 − cosφ

φ2
[ω]2.

The closed-form expression for the matrix logarithm is

log
[

2 b

0 1

]
=

[
[ω] A−1b

0 0

]
, (32)

where

[ω] = φ

2 sinφ

(
2 − 2T

)
,

A−1 = I − 1
2 · [ω] + [ω]2 · 2 sinφ − φ(1 + cosφ)

2φ2 sinφ
,

andφ satisfies 1− 2 cosφ = T r(2), |φ| < π . (Also, φ2 =
||ω||2.)

Computing the Recursive Gradient

To compute derivatives of the recursive formulation, we must
be able to compute derivatives of the matrix exponential and
of the adjoint maps: ad, Ad, and Ad∗ (Martin and Bobrow
1995). If we assumeg = Sgqg andh = Shqh are two screws
associated with rigid-body motions, whereSg, Sh ∈ se(3) and
qg, qh are scalars linearly dependent on the parameterP , then
G = eg andH = eh are the homogeneous transformations
associated with those motions, and their derivatives have the
form d

dpi
G = SgG

dqg

dpi
. The derivatives of the adjoint map-

pings on curves defined by eq. (7) are determined as follows.
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Recall the definition of the adjoint map,

AdG h = G h G−1,

which may also be written as

AdG h = egh e−g

for someg ∈ se(3), and similarly for the dual-adjoint map,

Ad∗
G ; h∗ = G−1h∗ G = e−gh∗ eg.

For the following, it is assumed thatg = Sgxg, G = eg,
h = Shxh, andH = eh, wherexg andxh are linear functions
of thepi (see the work of Gilbert and Johnson (1985)), and
implicit functions oft of unknown degree.

Writing out the term-by-term derivative for the adjoint
mapping,

d

dpi
AdG h

= dxg

dpi
Sge

ghe−g + eg dxh

dpi
She

−g − eghe−g dxg

dpi
Sg,(33)

= egShe
−g dxh

dpi
+ (

Sge
ghe−g − eghe−gSg

) dxg

dpi
, (34)

where the identitygeg = egg has been used. Note that the
first term is simply the adjoint map again, and the second term
looks like the Lie bracket performed onSg andeghe−g, which
leads to:

LEMMA 1.

d

dpi

AdG h = adSg AdG h

(
dqg

dpi

)
+ AdG Sh

(
dqh

dpi

)
.

(35)

We can similarly derive the relation for the Ad∗ operator:

LEMMA 2.

d

dpi

Ad∗
G h∗ = adAd∗

Gh Sh

(
dqg

dpi

)
+ Ad∗

G Sh

(
dqh

dpi

)
.

(36)

Note that these two identities still hold true if we replace
G = eg with egM (M ∈ SE(3) and constant), but not if we
replace it withMeg. This leads to another relation:

LEMMA 3. ForG = Meg,

d

dpi

AdG h = adAdMi
Sg

AdG h

(
dqg

dpi

)
+ AdG Sh

(
dh

dpi

)
.

(37)

Finally, the derivatives for the ad and ad∗ operators are:

d

dpi

adg h = adSg h

(
dqg

dpi

)
+ adg Sh

(
dqh

dpi

)
, (38)

d

dpi

ad∗
g h∗ = ad∗

Sg
h

(
dqg

dpi

)
+ ad∗

g Sh

(
dqh

dpi

)
. (39)

The preceding identities were used to derive the recursive
derivative shown in Figure 2 from the recursive-torque com-
putation in Figure 1.

Appendix B: Derivation of the Orientation-
Constraint Gradient

To compute gradients of the orientation-constraint equations,
we must first compute the gradient of the matrix log function
for our particular homogeneous transform. This result was
derived by Park and Bobrow (1995), and is stated here in a
slightly different form which is best suited for our computa-
tion:

LEMMA 4. Given a constraint equation of the form[g] =
loge[h] = 0 ∈ so(3), wheree[h] = 2T

d 20,tip ∈ SO(3),
20,tip = 2M1e

ω1q12M2e
ω2q2 · · · 2ne

ωnqn2Mtip
∈ SO(3),ωi

is from Si = (ωi, bi ), qi = qi(t, P ), 2Mi
is the 3× 3 rota-

tion matrix associated withMi , and2i,i+1 = 2Mi
eωiqi , the

gradient ofg satisfies:

∇q g = Q−1
h

[
Ad2T

d 20,1
ω1 · · · Ad2T

d 20,n
ωn

]
, (40)

where

Qh = I + 1 − cos||h||
||h||2 [h] + ||h|| − sin||h||

||h||3 [h]2. (41)

Proof. Given eh = 2T
d 2M1e

ω1q1 · · · 2Mne
Snωn2Mtip

, we
take the derivative with respect to a joint variable,qi :

(
∂

∂qi

eh

)
e−h

=
(
2T

d · · · 2Mi
eωiqi ωi2i+1 · · · 2Mne

ωnqn2Mtip

)
∗(

2T
Mtip

e−ωnqn2T
Mn

· · · 2T
M1

e−ω1q12d

)
, (42)

= 2T
d 2M1e

ω1q1 · · · 2Mi
eωiqi ωie

−ωiqi 2T
Mi

· · ·
2T

M1
e−ω1q12d, (43)

= Ad2T
d 20,i

ωi . (44)

The left side of the previous equation is in the form of a
theorem derived by Park (1991), which states that forX =
eA(t) ∈ G,

ẊX−1 =
1∫

0

eA(t)sȦ(t)e−A(t)sds.

In this case,X ∈ SO(3), and the derivative is not with respect
to time but to some parameterq. Recalling that[ω(q)] =
d2
dq

2T , and noting that the integrand is an adjoint map on so(3)
and therefore can be rewritten in vector form, the theorem can
be rewritten as:

ω(q) =
1∫

0

e[ω(q)]s dω(q)

dq
ds = Qω

dω(p)

dq
, (45)
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whereQω = ∫ 1
0 e[ω]sds. This matrix can be found by inte-

grating the closed-form equation for the matrix exponential
of ω.

Equating the right side of eq. (44) to the right side of eq.
(45) and replacing the generic variableω with h,

Qh

dh

dqi

= Ad2T
d 20,i

ωi .

InvertingQh yields the equation for a single column of the
gradient:

dh

dqi

= Q−1
h Ad2T

d 20,i
ωi .

The single equation may be expanded to a matrix equation
containing all of the columns of the gradient:

∇q h =
[

dh
dq1

dh
dq2

· · · dh
dqn

]
,

=
[

Q−1
h Ad2T

d 20,1
ω1 · · · Q−1

h Ad2T
d 20,n

ωn

]
,

= Q−1
h

[
Ad2T

d 20,1
ω1 · · · Ad2T

d 20,n
ωn

]
.
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