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Constraints

Abstract coordinates (Park and Brocket 1994). Although SE(3) is not
globally homeomorphic t6i®, an advantage of exponential
In this article, we examine the solution of minimum-effort optima¢oordinates is that the Jacobian of the map fiafrto SE(3)
control problems for open-chain manipulators. An approximatgs globally nonsingular.
solution to the optimal control problem is determined by a con- Much early research on optimal control of robot motions
strained parameter optimization over a set of B-spline basis fungised the minimum-time criterion (Kahn and Roth 1971; Bo-
tions. We demonstrate that the parameter-optimization formulatidsrow, Dubowsky, and Gibson 1985; Shin and McKay 1985).
of the problem is numerically ill-conditioned, and that it is there-Several researchers (Bobrow 1988; Dubowsky, Norris, and
fore essential to include analytic, or exact, gradients of the objectiv@hiller 1986) parameterized the geometric path with splines,
function and the constraints in order to guarantee a solution. A reand used a discrete parameter-optimization approach to find
cursive expression for these gradients is developed for general seriainimum time paths that avoid obstacles. Further work in this
chains. Constraints on end-effector motions are taken into accougirection added energy to the cost function (Shiller 1994) and
using the logarithm of the spatial displacement. Our formulation realso actuator dynamics (Pledel and Bestaoui 1995). Geering
lies on the use of matrix exponentials for the manipulator kinematicand colleagues (1986), and later, Bryson and Meier (1990),
dynamics, and task constraints. Several examples are presented t§@lved the generaltime-optimal control problem for a two-link

demonstrate the power and flexibility of our approach. arm following an unspecified path. Both researchers noted
the difficulty of applying numerical shooting methods, and
1. Introduction resorted to a parameter-optimization approach.

Other performance measures such as effort, energy, and

Previous research on the optimal control of robotic systenige time derivative of the control torques have been consid-
has been hampered by the complexity of the nonlinear equ{€d in the literature (Chen, Cheng, and Sun 1994; Mal-
tions of motion, and the difficulty of satisfying the necesladi et al. 1992; Suh and Hollerbach 1987; Hu, Teo, and
sary conditions for optimality. In this paper we present ah€€ 1994). These performance measures result in smooth,
approach that we have successfully applied to a number Ratural-looking motions that reduce wear and tear on the robot
challenging problems in the optimal control of open chaingvhen compared to time-optimal motions (Kenjo and Nag-
For our approach, like some others, we parameterize the joRhori 1986). Zefran, Kumar, and Yun (1994) considered a
trajectories to transform the optimal control problem into &v0-arm robot system holding an object, and directly solved
discrete parameter optimization. Unlike other approachei§e two-point boundary-value problem that arose from the
we determine the analytic gradient of the objective functioaximum principle (Pontryaginetal. 1962). They also noted
and the constraints in a manner that can be applied to gendhg difficulty in obtaining the gradient of the dynamics. In a
open chains. Also unlike others, we show that task-based ef@ter work (Zefran and Kumar 1995), they extended the prob-

effector constraints can be handled naturally with exponenti@m to handle unilateral constraints, and used a variational
approach to develop a finite-difference solution.
The International Journal of Robotics Research
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convert the optimal control problem into a discrete, nonlin1992), poorly conditioned problems require analytic gradi-
ear parameter optimization. With this approach, one guessa#s. These exact gradients allow the optimization algorithm
an initial motion that satisfies the constraints, and adjusts the quickly converge to a local minima that might otherwise
spline parameters in search of an optimum. The constraintet be found. Computation of the gradient of the cost func-
are usually obstacles in the workspace, joint limits, and cotion requires derivatives, or sensitivities, of the equations of
straints on end-effector motions. One of the main advantagesmtion with respect to the joint variables. These sensitivities
is that even if a nonoptimal path that satisfies the constrairtiave also been developed by other researchers (Balafoutis,
has been found, itis still a valid, or feasible, trajectory. GilbeMisra, and Patel 1986; Murray and Neuman 1986; Balafoutis
and Johnson (1985) used uniform B-splines to parameteriaad Patel 1991), and could have been used for the present
the motion of a body moving in a plane in the presence afiork. However, our formulation provides additional insight
obstacles. They demonstrated that minimum energy motioimto the problem, since we are able to represent end-effector
can be found reliably with a large number of path parametengsk constraints in exponential coordinates, and obtain ana-
Asubsequent paper (Gilbertand Ong 1994) extended the balgitic expressions for the gradients of these constraints. These
approach to solve path-planning problems. In the work of Loonstraint sensitivities have not been presented previously in
(1992), the difficulty of obtaining gradients for Gilbert's ap-the literature.

proach (applied to flight-vehicle trajectory optimization) was
discussed, and an approximate scheme was developed. O@e
researchers (Tabarah, Benhabib, and Fenton 1994; Field and

Stepanenko 1996; Ozaki and Lin 1996; Park 1997) have us@‘ansider am-degree of freedom, possibly redundant, open-

splines with varying degrees of success. All of the aboveyain manipulator.  The minimum-effort optimal control
mentioned papers discuss the need for exact gradients of H}Sblem for this system is

objective function.

Minimum-Effort Optimal Control

An important topic related to our work is kinematic redun- . 1
dancy resolution and path planning for specified end-effector minimize J(1) = 1 / |72t 1)
tasks. Several efficient global approaches have been devel- () 2
oped for kinematic redundancy resolution (Wang and Chen 0
1991_; Kazgrpunian and Wang 1988; Kim, Pgrk, and L_eg 1994; subjectto  M(q)j+h(q,§) =T, (2)
Martin, Baillieul, and Hollerbach 1989) using a variational <q) <7 3)
approach for their solution. Dynamics was added to the prob- 2=9%) = ?’
lem for a 3-R planar robot by Ma (1996). Seereeram and Wen q(0) = g0, 4(0) =0, (4)
(1993, 1995) added obstacle avoidance to the redundancy- qty) =qy5, q(ty) =0, (5)

resolution problem, where joint rates were considered to be ) ] ) ]
the control variable. All of these approaches require an¥€re €q. (2) is the equation 0‘; motion for the open chain
lytic gradients of the cost functional. An interesting aspec¥ith the jOII’]tn.COOI'dIr.'Iate@ € 9" and the !Ofnt forces or
of these papers is that each seems to use a different form fgfauesr € i*; M(q) is then x n inertia matrix; andi(q, ¢)
the end-effector orientation constraint (Angeles, Rojas, ar e vector of Coriolis, gravity, and friction terms. Con-
Lopez-Cajun 1988). straints on joint displacements are represented by eq. (3),
The foundation of our approach is the use of product-of¥herég, g € %" are assumed to be given for a particular
matrix exponentials (POE) to represent the manipulator king_]ampuli_;\tor. Whlle. the problem is formulated with the final
matics. Although other formulations of the kinematics andMe #s fixed, we give an example that shows how our ap-
dynamics could have been used, the POE-based approQEﬂaCh will find the optimal final time if it is less than the
makes it easier to express the problem for general open chaifRecified s. In addition to the constraints of egs. (2)—(5), we
since joint motions are represented in terms of screw ma@lso consider task-dependent constraints on the end effector.
tions, which include either rotational or prismatic joints, with OF these constraints, the end effector is required to trace a
the form of the equations identical in either case (Park, BGIVEN path in space, with or without a prescribed orientation.
brow, and Ploen 1995). The manipulator dynamics are comMis constraint is represented/asquality constraints of the
puted from a modified version of Newton-Euler dynamicg0'™m
expressed in terms of products of matrix exponentials. ~ .
. - . . i(gt),c(t)) =0, j=1...k, 6
We determine an approximate solution to the optimal con- 8i(q(®). c®) J ©

trol problem by a constrained parameter optimization on @herec(-) is a curve in space that includes both position and

set of B-spline basis functions. We then demonstrate that tBfientation information about the desired end-effector posi-

standard parameter-optimization formulation of the problefion, and we assume th@t(q (1), c(1)) is continuously differ-

is numerically ill-conditioned. While it is possible to opti- entiable. These constraints are specified directly in exponen-
mize many objective functions by estimating the gradients (Lgial coordinates, and are discussed in more detail in Section
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4. (See Park’s [1991]) work for a discussion of exponential Unfortunately, for problems that are ill-conditioned to be-
coordinates.) gin with, approximate finite-difference gradients can lead to
For our approximation to the solution of the optimal conan unbounded condition number of the approximate Hession
trol problem, we assume that the joint coordinates are paf J(P), and the algorithm will fail. We experienced this
rameterized by cubic B-splines (De Boor 1978) in all of th@roblem firsthand at the beginning of this research: our opti-
examples in this paper. The B-spline curve depends on th@zations would terminate prematurely when we used finite-
blending, or basis, functions;(¢), and the control points difference gradients. A more-complete discussion of the
P = {p1, ..., pm}, With p; € R". The joint trajectories then problems associated with finite-difference gradients is given
have the forny = ¢(¢, P) with by Gill and colleagues (Gill, Murray, and Wright 1981; Gill
et al. 1986) and their references. Due to the complexity of
the dynamic equations of motion, most nontrivial solutions
to optimal control problems for robotic systems presented in
the research literature use finite-difference gradient approxi-
The control pointg; of the spline only have a local effect onmations. In the following sections, we give explicit formulas
the curve geometry (Faux and Pratt 1979, ch. 6), so given af§y the gradients of andg, which can be applied to general
t, there will be a maximum of four nonzew® (¢) in eq. (7) open chains.
for a cubic spline. In addition, the convex-hull property of

B-splines makes them useful for smoothing or approximating Optimization of Unconstrained Motions
data. The fact tha} /., B;(t) = 1 also gives the desirable

property thatimits on joint displacements translate directly The first problem we consider is a minimum-effort motion
to limits on the spline parameteys. That s, if there is ajoint with no constraint on the motion of the end effector, so that

q(t, P) =Y Bi(t)pi. 7
i=1

limit of the formg < g, and one constraing; < g, then k = 0in eq. (10). For any given parameter vecorthe joint
m m torques can be computed efficiently with a modified recursive
= _ = Newton-Euler dynamics algorithm based on the product-of-
= Bi(t)pi = Bi(t)qg = q. . : : ; L
1 ; AP ; A= exponentials (POE) kinematic representation, shown in Fig-

ure 1 (Park and Bobrow 1994). The notation used for the algo-
The parameter optimization equivalent of the originafithm is defined in Appendix A. Aside from its coordinate-free
minimum-effort problem is geometric interpretation, an advantage of this POE-based al-
” gorithm is that the joint coordinates appear explicitly in the
minimize 1 5 equations in thesame formfor revolute or prismatic joints.
p J(P) = > /Ilf(t, P)||%dt, (8) Because matrix exponentials are used to represent the joint-
0 to- joint transformations, itis trivial to differentiate them with
respect to joint displacements. One can then compute joint
subjectto ¢ <p; <q, i=1...m, (9)  torques and their derivatives with the same computer source
gj(q(t, P),c(1))=0, j=1...k.(10) code for any open-chain robot.

With this approachy = t(z, P), becausg, ¢, andg allare 3 1 The Recursive Gradient Formulation
given functions of andP from eq. (7) and its time derivatives,

sot is an explicit function of the spline parameters througf© compute the gradient of the cost functional, we note that
eg. (2). By the proper choice of the spline basis functions at tr
both ends of the joint trajectory, the path-end conditions, egs. _ T
(4) and (5), can be satisfied by keeping the outer two pairs of W= / v (prydr. (11)
spline-control points constant. 0

If one does not consider the end-effector curve-tracinghe most significant step for this gradient is computing the
constraint (eq. (10)), we have converted the original prolglerivatives of the joint torques with respect to the path param-
lem into a parameter-optimization problem with no nonlineagters,P. We compute these derivatives analytically by dif-
constraints, and efficient quasi-Newton algorithms can thdarentiating the recursive dynamics shown in Figure 1. The
be used to solve the problem. However, for assured conveletails of this derivation are provided in Appendix A. The
gence of these algorithms, two conditions must be met: thmesulting recursive algorithm for the gradient is shown in Fig-
second derivatives af (P) must be bounded, and every ap-ure 2. Alternative approaches have been developed for the
proximate Hessian (found, for example, from a BFGS updatimearizationof the dynamics equations that result in a simi-
[Luenberger 1989]) used in the quasi-Newton algorithm mudr algorithm. Balafoutis and Patel (1991) provide a complex-
remain positive definite with bounded condition number (Gillity analysis of a recursive algorithm to compute a linearized
Murray, and Wright 1981). model of a manipulator with revolute joints.
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e Initialization

Vo=Vo=Why1=0

e Forward recursion: for i =1 to n do
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The objective function in eq. (8) and its gradient were inte-
grated numerically, using the trapezoidal rule with a constant
number of integration steps. Although wpproximatedhe
integral inJ (P) with a fixed-step-size integrator, the gradi-
ents of the approximated integral weneact since the same
integration steps were used in the computation of the gradient
in eq. (11).

Ti1; = M;eSi% 3.2. Examples
Vi = Adp-r (Vie1) + Sis Using the above algorithms, we compute minimum-effort mo-
. o . tions on planar and spatial open chains using the sequential
Vi = S+t AdT,-‘_‘l,,» (Vi-) + quadratic programming (SQP) optimizer, NPSOL (Gill et al.
[AdT_1 V1), Sidi] 1986.5).' Two examples of open chains are first consjdergd—a
i1, two-joint planar arm, and a 5R planar model of a weight lifter.

e Backward recursion: for i =n to 1 do

Wi

S;TW;'

Ti

Adpoy (Wia) + JiVi — adi, (Vi)

Each example is given 1 sec to perform a point-to-point mo-
tion, with the additional requirement that the joint velocities
are zero at the endpoints.

The two-joint planar arm was modeled as two thin rods
of similar masses and lengths (0.25 m, 0.5 kg), following a
path consisting of a uniform, cubic B-spline with seven knots.
Figures 3-5 show stop-frame motion at constant time inter-

F|g L. The POE-recursive Newton-Euler inverse- dyném“(iﬁals of the original path, the optimized path without gravity,

algorithm.

o Initialization

4o _ d

_ AWn

and the optimized path in the presence of gravity. The origi-
nal path uses the most effort at the beginning of the motion,
accelerating against the forces of gravity, whereas the final
paths store kinetic energy in a swinging motion and then use
that energy to move up toward the final position. The costs
for these motions werg = 3.74 for the initial motion with

=== — =0, Vp€P gravity, andJ = 1.36 for the final motion with gravity. The
pi b P optimization took approximately 40 sec to compute on an SGI
e Forward recursion: for i =1 to n do Indigo 2 running at 150 MHz.

As a more-interesting example, we examine a 5R planar

gf = STa Ad - (V )i+ Adp-y 'dt‘i/p L+ S1 dp model of a weight lifter. The person is approximately 5-ft,

X ' ' 10-in (1.9 m) in height, and 80 kg (calves 0.52 m, 14 kg;
v _ da “Fadpqg Si+Adg- dVi-y + thighs 0.42 m, 26 kg; torso 0.48 m, 30 kg; upper arm 0.29 m,
dp; dp; ey (Vi-1) T dp

ad;!,_&ql + ady; 51

e Backward recursion:

dgs +s,

I

fori=ntoldo

V)0

dW; dv; " dWit1 Fig. 3. The 2R planar open chain, original path.
= Jio— +Ad.-
dp; " dp; Toiw dp;
dv;
—adiy, JiV; — adj; Ji—~ > } l
d:m Agl : *~— —_ o\/ QA o> > >
—a AdMH_I ;+1st+— Tz—tl L i+1
d Fig. 4. The 2R planar open chain, no gravity path.
T TdW‘l'
— = §—=
dp; dp;

)

Fig. 2. The POE-recursive derivative Newton-Euler invers e—— o~ V S, \
dynamics algorithm.

Fig. 5. The 2R planar open chain, gravity path.
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6 kg; and forearm 0.33 m, 4 kg), and is lifting a pair of 100-k¢
weights in a standard gravity field.

The initial, improper, lifting technique is shown in Fig-
ure 6, and the final lift is shown in Figure 7. All joints had
equal weighting in the cost functional, and the back produce
most of the torque load in the original lift. This load was
taken up more by the legs in the optimized lift. Figure ¢
shows that the integral of the cost function was reduced t
an order of magnitude from the original. The major saving
in effort came from reducing the torque applied at the begit
ning of the motion by the back, and the torque applied in th
middle of the motion by the shoulders. Of course, the lifte
also passes the weights through its knees, which points out!
need for adding barrier avoidance to the optimization prol
lem. The path for this problem was a 5-knot, uniform cubi
B-spline. The initial and final costs for the weight lifter were

217

0.5F

X

1 L
Y] 0.1 0.2

03

n L L
0.4 05 0.6
time, in seconds

s
0.7

L
0.8

0.9

1

2.25 x 107 and 144 x 10, respectively. The optimization
took approximately 120 sec to compute. )

In this exampleall the joint parameters were specified in2d final paths (SR planar).
the initial and goal configurations. In the next section, we
specify only the desired Cartesian position of the initial and
final weight locations, and allow the redundant weight lifter
to choose the initial and final values of the joint angles while

satisfying the Cartesian constraints. More reduction in total

cost is expected for this case, since the lifter has freedom'€reM; is a constant-matrix transformation between link
choose an initial pose to minimize torque requirements. frames,S; is the joint screw written in th&h link frame, and

g; is the joint variable. Recalling that the joint positions are
defined byg = ¢(z, P), assume for the following discussion
that the end-effector frame is written in the form

Fig. 8. The integral of the cost function over time for the initial

Toip = M1e*19 M2e%%2 - - - M, %" My, (12)

4. Optimal Robot Motion for Constrained End-
Effector Tasks

O, P) b, P)

In this section, we look at the problem of producing minimum- Toip(t, P) = [ 5 )

effort motions for tip-based tasks. These tasks consist of tra- ] ’
jectories in SE(3) that the robot end effector is required to foly o rer:

- 0,1ip € SE(3) is a 4« 4 homogeneous transformation,
low. The end-effector frame can be written from the forwar% € SO(3) is a 3« 3 rotation matrix, ant € %3 is a position

kinematics as the concatenation of the link transformatio.r\ll%ctor. The desired end-effector frame location is represented
(Park, Bobrow, and Ploen 1995; Brockett 1984; Murray, L'similarly

and Sastry 1994):
whereP. is a set of B-spline parameters that define the desired

o fﬁo {QA {Qp {'P end-effector position and orientation,; and®,. Using the
e

relation[wy] = log6y, so that®, = el@¢Fl jtis apparent
Fig. 6. The 5R planar open chain, original path.

that one parameterization of the desired orientations of the
0
TUYS Y

end effector in SO(3) can be obtained by specifying a smooth
Fig. 7. The 5R planar open chain, optimized path.

(13)

©q(t, Pe)  bga(t, Pe)

VAR : (14)

curve forwy(t, P.) € %3. The desired end-effector motions
on SE(3) can then be parameterized with cubic B-spline con-
trol points, P.. Three curves were used to define the desired
translational motion of the end-effectby (¢, P.), and three
curves were used to define the desired rotational motion of
the end-effectow, (¢, P.). For general motions on SE(3), the
six independent closure-constraint equations are:

log(®’ (t, P.)®(t, P))

b(t. P) — ba(t, P.) }:O' (15)

g(t,P,PC):|:
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Note that if®@ = ©,4 in eq. (15), then logf) = 0, so the 4.2. Relaxed Orientation Constraints

constraints on orientation would be satisfied. FOt ©4,  The orientation portion of the constraint defined in eq. (15)
a smooth-orientation error term is generated that representsyides three independent equations that fully constrain the
screw motion between the two orientations. orientation of the end effector. If one relaxes the full orienta-

~ One difficulty with eq. (15) is that it does not represent gon constraint to allow for cases where the direction of only
single spatial constraint, but mst(_aad is a continuous constrajgile axis of the end effector is specified and the remainder are
overallz € [0,7]. Several algorithms have been developeflee these equations must be altered. This type of constraint
to optimize objective functions with thesemi-infinitecon- 5 most useful when the end effector is required to remain
straints. The optimizers use the constraint minima, maximgags mal to a curve or surface during the motion. If we assume
and a few interior points to characterize critical informatioqhat the end-effectar-axis is required to align with a desired

about the constraints. Some early examples were developedyis put is free to rotate around it, then the constraint is
by Hettich (1979, 1986) and by Polak (Polak and Tits 197%quivalent to the equation

Polak and He 1991, 1992). Recently, work by Panier and
Tits (1989) has been implemented in the Matlab optimization O =0, (20)
toolbox as “semiinf.m.”

Rather than apply the relatively complicated algorithms fofherec is any scalar and is a unit vector. Multiplying by
handling the semi-infinite constraints, we chose to enforce tff&; and taking the matrix logarithm yields
constraints at a finite number of poinise [0, t£]1, and rely
on the continuity of the B-splines to ensure that the constraints
are approximately satisfied between theWe enforced the

log(®] ©) = [Za] = [(0, 0, )], (21)

; - : ] so this constraint is equivalent to setting the first two terms
constraints ati2 points ¢ is the number of control points) ¢ wq to zero. This approach can be applied to any direction

uniformly spaced in0, #,] for the examples given in this re- i, {he end-effector frame by adding an additional constant
search. The software package NPSOL solves the SQP prgiystormation to the end effector that aligns thaxis with
lem by choosing the iterates so that they move along a linegfe qesired direction.

approximation to the nonlinear-constraint surfaces. Hence, it
is essential to provide exact gradients of the constraints of €3 orientation-Constraint Gradient

(15) to form the linear approximation with accuracy. . . . . .
To compute gradients of the orientation constraints in eq.

(15), it is necessary to compute the gradient of the matrix
log function. Assume thdt] = Iog(@ﬁ@o,,,-p) € so(3) and
Consider the position portion of the constraints from eq. (1580.rip = ©Oum; 21O p1,e?292 - - - O pg, e Oy, € SO(3),
with ¢; = g; (z, P). In Appendix B, it is shown that

4.1. Gradients of the Constraints

-1 e )
where the subscript i, denotes position. Voh =0, [ Adoreg,®1 Ade ey, @n ] . (22)
The gradient of these constraints is
where
Vp gp(t, P, Pe) = Vp (b —byg) = Jp(t, PY(Vpq), (17) o0h— 14 1 — cosh bl h — sink P 23)
whereJ, (¢, P) is the bottom half of the manipulator Jacobian, h= h? h3 ’

as defined by
4.4. The Optimization Algorithm

w _ - jl‘ .
( v ) =Jq= [ Jp ]q' (18) We now summarize the optimization algorithm using the

) ) ) ~ equations derived previously:
The Jacobian can be easily obtained from the following

procedure (Murray, Li, and Sastry 1994). Let Algorithm MinEffort.
Given an open-chain roboR, a Cartesian path

— M. Siv1qi 514 . .
Tij = Mjy1e” %0 M e, (ba(t, P.), wa(t, Pr)), and the constraint equation
then g(t, P, Pc), compute the minimum-effort robot mo-
tion as follows:

J=TT = Adp,,S1 Adr,S> - Adp,Su |, o
(19) Initialization.
where the columns of are elements of SE(3) arranged as six 1. Atthe initial time,r = 0, find the joint displace-
vectors. ments that minimizg” g. That s, produce alocal
Next we examine the orientation constraints for partially solutiong*(0) to the inverse-kinematics problem.

and fully constrained orientations. Definego = ¢*(0).
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2. Produce a set of pointg corresponding to uni-
formly spaceds;, which satisfies the equation
g(ti, qi, P.) = 0, using the following iterative

process starting with = 1: é} Igf ?{ @ %
(a) using the minimum-norm pseudoinverse Jg é é

cobian and the initial conditio(0) = ¢; 1,

. - by, P, i e o
integrate the equatiah=J* % wZEt PZD Fig. 9. A 200-kg lift with initial repositioning.
until either a singularity is reached, or=

i1,
(b) seti =i+ 1;and

(©) if g(ti, gi, P.) # 0, solve the minimization { {
problem in step 1 foy; = ¢(;), starting é,

fromg;_1.
Step ObjConst.

1. Compute the objective functioh= 3 tgerrdt,
wherert is computed using the recursive Newton- & E“ oﬁ i
Euler equations from Figure 1.

2. Compute thé-constraint functiong(z;, P, P.).

Fig. 11. A 40-kg lift, local minimum withr; = 2.0 secJ =
Step ObjConstGrad. 1.76 x 10°.

1. Compute the objective gradien¥pJ =
f,;l tT'Vp tdt, whereVp T is computed using the

recursive Newton-Euler derivative formulain Fig- & b "1\ ¥ {
ure 2.

2. Compute the constraint gradient from eqgs. (22

and (23) Fig. 12. A 40-kg lift, local minimum witht; = 3.5 secJ =

1.77 x 10%,
4.5. Examples

The weight lifter problem was solved again without specifiFigure 10 shows a 40-kg minimum-effort lift for the free end-
cation of the initial joint angles, but with the addition of atime problem. In this case, a 4-sec initial motion is specified,
Cartesian constraint on the initial position of the weights. Fand the final motion is completed in®2sec with a cost of
this case, at the initial ime= 0, the end-effector constraint 5.15x 10*. Figure 11 shows another local minimum solution
had the same form as in eq. (15). There was no constratotthis problem, which completed in@sec with a cost of
on the end-effector motion at instants between the initial arid76 x 10*. The last example in Figure 12 is a similar local
final times. Figure 9 shows the new 200-kg, minimum-effortminimum, but there is an extra oscillation in the motion. The
1-sec motion, with a cost of.85 x 10° as compared to the motion time for this case was®sec, with a cost of. Z7x 10%.
14.4 x 10° cost from the previous optimal solution shown in  Almost all of the examples in this work had high condi-
Figure 7. This looks a lot like the Olympic lift, the “snatch.” tion numbers for the approximate Hessian generated during
The only difference is that in the snatch the lifter pauses withe nonlinear parameter optimization. This means that the
the weight over his head before lifting with the legs. optimization would be difficult to solve without exact gradi-
Figures 10-12 demonstrate another interesting featureaits. As a typical example, Figure 13 shows the condition
our approach to solving the optimal control problem. If thewumber of the approximate Hessian matrix generated during
final time 7, specified islonger than that needed for the the optimization process for the problem of Figure 10, versus
minimum-effort motion, the algorithm finds thg needed the iteration number. The same plot shows the value of the
for the free final-time problem. That is, the optimal motion®bjective function,/. One reason for the poor conditioning
will come to rest before they reach the specified final timén these problems is that some regions during the motion re-
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quire large torques, such as the acceleration and decelerat
phases, while other regions require little or no torques. Tt
B-spline parameters in the high-torque regions have mu
greater effect o/ than those in the low-torque regions.

Figures 14-16 show the original and optimized motion.
for a Mitsubishi PA-10 robot tracing a planar path. The origEid. 15. The Mitsubishi PA-10 7-DOF arm tracing a path with
inal motivation for this problem was that the arm is to béptimized effort.
mounted to an undersea vehicle and used for the inspection

of welds. Because the entire vehicle is powered electricall
it is essential to conserve energy. The energy consumed
the robot is given approximately by the cost function of ec
(8), since torque is proportional to current. This robot ha
seven revolute joints, and is tracing the curve shown with

specified orientation with respect to the path. The origin
motion shown in Figure 14 had a cost #f= 5.02 x 10°,
and the optimized motion shown in Figure 15 had a cost
4.61 x 10°%. If one allows the base position to be a parameter

for the optimization, the same operation could be performef,i_ Conclusion
as shown in Figure 16 for a cost ofl5 x 10°. An interesting

feature of th_e last sol_ution found is_ that the l_)ase of the robgg, using B-splines to reformulate the minimum-effort op-
was placed in a location that required very little torque frongma| control problem as a discrete parameter-optimization
the robot’s base joints, which are the most difficult to MoVeproblem, and by using the matrix exponential formulation of
the kinematics and dynamics of open-chain mechanisms, we
have developed a new approach to motion optimization of
open chains with end-effector constraints. We have shown
that to reliably obtain local minimizers of the objective func-
10 " " " - - - - . 4 tion, exact gradients of the dynamics and the constraints are
q Lus needed, owing to the inherent ill-conditioning of the problem.
] ' We have developed efficient, recursive, analytic expressions
L’Wﬁw 13 for these gradients of the dynamics of general open chains.
. Our examples have reliably produced results for minimum-
i effort motions of open chains with complex nonlinear dy-
1 2 namics, time-varying constraints, and redundant degrees of
é freedom. The new motion-optimization software provides a
1 powerful tool for the analysis and design of articulated sys-
tems.

?llig. 16. The Mitsubishi PA-10 7-DOF arm tracing a path with
&ptimal base location.

10 Condition #

Hessian Condition Number
3,

O,

Objective

o Appendix A: Notation and Derivation of the Re-
m © @ o 0 0 w0 W0 cursive Derivative

Iteration Number

) i ] ) Standard mathematical notation applies whenever possible in
Fig. 13. Condition number of Hessian and cost function versigis text. In particular, the gradient opera%or, when applied

iteration number for the problem in Figure 10. to a scalar, results in a row vector the dimensionr of

_ a7 T a7
foi—[a—x’l P m] (24)
and the gradient of the vector-valued function is a matrix:
ad d d
Vx T = 0x1 dxo 0xXm . (25)
AR b

Fig. 14. The Mitsubishi PA-10 7-DOF arm tracing a path. d_xl T m
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For the algorithm in Figure 1V; is the six-dimensional of se(3) and s&3), which have the following forms:
generalized velocity of link, expressed in the coordinates of

link i, S; € se(3), and Adg(h) = [ [b?@) g ][ c;): ]
[ L =min? milnd w e | e el o
s=[fmat o] e e = [ 0R[0]
is the 6x 6 “inertia” matrix, where-; is a vector from the origin ad,(h) = [ [[‘;’g]] [a?] ][ ";Ih ]
of the link+ frame to the center of mass of link A vector - L . ¢ . '
variable in bracketg{] wherer € %i") is taken as the skew- acg(h*) — [“’16] [["g]]T i| [ ‘5:* ] ,
a)g *

symmetric matrix formed by using the vector to represent the

free parameters of the matrix. whereG = (0, b), g = (wg. vy), andh = (wp, vp).

_ The matrix exponential and logarithm both admit a closed-
Notation and Operators form expression as mappings between SE(3) and se(3). The

Thespecial Euclidean groupr SE(3), is a Lie group corre- matrix exponential (Park 1991) can be computed thus:

sponding to the homogeneous transformationsiérso that
for G € SE(3),
exp|: [w] v ]= |: exp(lw]) Av ] (31)

: 0 o0 0 1
® b
a=[45 %] 27)
where

The Lie algebra associated with SE(3) is referred to as se(3),

whereg € se(3) has the form: 10) [lwll,

— COS¢ ¢ —sing =,
) ) sing 1— cos¢
The spatial rotations represent a subgroup of SE(3), and exp([w]) I+ [w] + 5
are referred to as thepecial orthogonal grou@O(3), and its ¢ ¢
associated algebra so(3). The closed-form expression for the matrix logarithm is
We refer to elements of the Lie group by capital lettérs,
or H typically (or T, where it matches the accepted use for Iog[ (0> 11 ] _ [ ug] A*O:Lb ] ’ (32)
homogeneous transformations), and the associated member
of the Lie algebra by the matching lowercase letters. Ajhere
element of the Lie group can be used as a linear mapping on
the Lie algebra, and this is called thdjoint mapon SE(3).
It is commonly denoted by Ad, and is given by (] ¢ (® _ ®T)
2sing ’

Adg(h) =G h G, @) L o] 4 [of? . 259 = $ L+ cosp)
for G € SE(3),h € se(3), wheré: is in the 4x 4 matrix form 2 2¢2sing
of eq. (28). Similarly, the Lie algebra can be used as a linear -
mapping on itself, denoted by ad, which is also calledtiee 2109 Satisfies - 2cosp = T7(0), |¢| < 7. (Also, ¢? =

[w]?.

s

2
bracket The Lie bracket has the form lll1)

ad,(h) = [g, h] = gh — hg, (30) Computing the Recursive Gradient
for g, h € se(3). To compute derivatives of the recursive formulation, we must

The dual adjoint is a mapping on the space of wrenchedsg able to compute derivatives of the matrix exponential and
where the dual valug is denoted by*. Where a screw has of the adjoint maps: ad, Ad, and A¢Martin and Bobrow
the form of eq. (28), the dual screyt = (w, f) hasthe 4« 4  1995). If we assumg = S,q, andh = Sjq; are two screws

matrix representation associated with rigid-body motions, whefig S, € se(3) and
q¢, qn are scalars linearly dependent on the parameténen
gF = [ [-g] o ] G = ¢% andH = ¢" are the homogeneous transformations
associated with those motions, and their derivatives have the

The adjoint and dual-adjoint mappings may be representéaim dipl_G = SgG‘;ﬁ. The derivatives of the adjoint map-

as either 4x 4 matrices or as operations on the vector fornpings on curves defviined by eq. (7) are determined as follows.
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Recall the definition of the adjoint map, Appendix B: Derivation of the Orientation-
Adg h=Gh Gt Constraint Gradient
which may also be written as To compute gradients of the orientation-constraint equations,

we must first compute the gradient of the matrix log function

for our particular homogeneous transform. This result was

for someg € se(3), and similarly for the dual-adjoint map, derived by Park and Bobrow (1995), and is stated here in a
Ad% Bt = G-It G = e=Sh* et ;ggr;]htly different form which is best suited for our computa-

Adg h =eShe™8

For the following, it is assumed thgt = Sex,, G = €8,
h = Spx;,, andH = e", wherex, andx;, are linear functions
of the p; (see the work of Gilbert and Johnson (1985)), an
implicit functions oft of unknown degree.

Writing out the term-by-term derivative for the adjoint

LEMMA 4. Given a constraint equation of the foifm] =
logell = 0 € so(3), whereel") = ©70¢,;, € SO(3),
é))o,zip — @Mlewlql@)Mzewzqz - @newnqngM”p € SO(3),w;
is from S; = (wi, b;), gi = qi(t, P), ©p; is the 3x 3 rota-
tion matrix associated withf;, and®; ;11 = Oy, e“i%, the

mapping, gradient ofg satisfies:
4 pdg h
dpi Vg = Q—l[ Adgrg. w1 -+ Adgrg  wy ] (40)
= Beg o8he 8 4 o8BS, om8 — o8hes s (33 ! " o o
= ZpSgeShe™8 +e8 TS e 8 —eShe d_mg’( ) )
where
= egShe_g% + (Sge8he 8 — e8he™8S,) %, (34) .
S _,, 1—cosl|hl| |12l = sinllAll >
where the identityge$ = e¢g has been used. Note thatthe On =1+ T [h]+ e (17 (41)

firsttermis simply the adjoint map again, and the second term
looks like the Lie bracket performed oy ande$he™$, which
leads to: Proof. Givene" = 0] 0y,e?4 ... Oy, eSOy, ,, we
take the derivative with respect to a joint varialjg,

LEMMA 1.
d d d 0
—~_Adg h = ads, Adg h (ﬂ) +Adg S <ﬂ> . <—eh> et
dpi dp; dp; 0g;

= (®5 e Ou e M wi O g - - Oy, € ®Mzip> ¥
We can similarly derive the relation for the Adperator:

LEMMA 2. (@L,ipe_w"q"@;zn . @Lle_wlql@d> ; (42)
L Adg, = adhg 1 i (d&) +Adg; S (dﬂ> : = OOt O e e MO, -

dpi G dpi dpi (36) @ﬁle_w141@ " (43)

= Adgre, o (44)

Note that these two identities still hold true if we replace
G = ef with e*M (M e SE(3) and constant), but not if we The |eft side of the previous equation is in the form of a

replace it withMe$. This leads to another relation: theorem derived by Park (1991), which states thatfoe
LEMMA 3. ForG = Me?, A e G,
d dq dh 1

—Adg h = Adg h | =2 ) +Adg Si [ — ).
dpi’ Ak s Ado (dpi>+ ¢ h<di>

Xx~1= /eM’)SA(t)e*A(”“‘ds.

0
Finally, the derivatives for the ad and*agdperators are:
In this caseX € SO(3), and the derivative is not with respect
d _ dqg dqn ; ; _
—ad, h =ads, h | —= ) +ad; S, , (38) to time but to some parametgr Recalling thafw(q)]
dp; dpi dpi ‘2—®®T, and noting that the integrand is an adjoint map on so(3)
and therefore can be rewritten in vector form, the theorem can

d dqg dqh it .
d—piadgk h* = adgg h <_l) + ad; Sh <_ . (39 be rewritten as:

dp dpi .
The preceding identities were used to derive the recursive (w(@)]s 40 (@) dw(p)
- i . w(g) = [ V" —ds = Q, . (45)
derivative shown in Figure 2 from the recursive-torque com- dg dq

putation in Figure 1.
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whereQ, = fol el®$ds. This matrix can be found by inte- De Boor, C. 1978A Practical Guide to SplinesNew York:
grating the closed-form equation for the matrix exponential Springer-Verlag.

of w. Dubowsky, S., Norris, M. A., and Shiller, Z. 1986. Time-
Equating the right side of eq. (44) to the right side of eq. optimal trajectory planning for robotic manipulators with
(45) and replacing the generic variallevith #, obstacle avoidance: A CAD approadptoc. of the IEEE

Intl. Conf. on Robot. and Automatol. 3. Los Alamitos,
CA: IEEE, pp. 1906-1912.

Faux, I. D., and Pratt, M. J. 197€omputational Geometry
for Desigh and Manufacture: Mathematics and Its Appli-
cations 4th ed. Wiley.

dh
On da Adgre,, @i-

Inverting Qy, yields the equation for a single column of the

gradient: Field, G., and Stepanenko, Y. 1996. Iterative dynamic pro-
dh L gramming: An approach to minimum-energy trajectory
da: =0, Ad@g@mwi- planning for robotic manipulatorsroc. of the IEEE Intl.

Conf. on Robot. and Automat/ashington, DC: IEEE, pp.
The single equation may be expanded to a matrix equation 2755-2760.

containing all of the columns of the gradient: Geering, H., Guzzella, L., Hepner, S., and Onder, C. 1986.

Time-optimal motions of robots in assembly taskSEE

Gh o= [ ;_h :li_h j_h ] ’ Trans. Automatic Contrd1(6):512-518.
a d4q2 an Gilbert, E. G., and Johnson, D. W. 1985. Distance functions
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= Q;l[ Ad@g@mwl Ad@;@oynwn ] Gilbert, E. G., and Ong, C. J. 1994. Robot path planning
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