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This paper presents an optimization-based framework for emulating the low-level
capabilities of humanmotor coordination and learning. Our approach rests on the obser-
vation that in most biological motor learning scenarios some form of optimization with
respect to a physical criterion is taking place. By appealing to techniques from the theory
of Lie groups, we are able to formulate the equations of motion of complex multibody
systems in such away that the resulting optimization problems can be solved reliably and
efficiently—the key lies in the ability to compute exact analytic gradients of the objective
function without resorting to numerical approximations. The methodology is illustrated
via a wide range of optimized, “natural” motions for robots performing various human-
like tasks—for example, power lifting, diving, andgymnastics. © 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

Of all the remarkable physical abilities of humans,
motor control is the skill that is most often taken for
granted, as it seems to require the least conscious ef-
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fort on our part. Only when a particular motor skill
is impaired or lost do we then begin to appreciate the
difficulty of the overall motor control and learning
task. It comes as no surprise that one encounters these
exact same difficulties when attempting to program a
robot to perform natural, human-like motions; this is
the general theme that we address in this paper.

Although we perform everyday motions quite
effortlessly, it is all too easy to forget that some of
thesemotor skills are acquired only after considerable
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effort, in some cases after years of practice. From a
child learning to throwaball or swingabat, to anadult
perfecting her golf swing or practicing calligraphy, or
a gymnast mastering a new tumbling routine—these
seemingly distinct motor skills become a part of the
motion vocabulary only after years of practice.

Yet we can still infer some common sequence of
events in themotor learning process. Upon first learn-
ing the skill, the resultingmotion is usually crude and
awkward, lacking grace and fluidity—it appears that
initially only a fewdegrees of freedomaredeliberately
controlled, with the remaining degrees of freedom
either locked in place or “pulled along” by mechani-
cal and other built-in constraints of the human body.
Then, as the motion is practiced, the once-locked de-
grees of freedom now begin to unlock, and move in
coordination with the controlled primary degrees of
freedom. When the motion is perfected, all the de-
grees of freedomwork synchronously to create a fluid
and natural-looking motion. The resulting motion is
moreover optimized with respect to some physical
criterion.

There is another common feature to the motion
learning process: the diminishing reliance on feed-
back as learning takes place. Initially, the motion will
be guided and corrected by some form of sensory
feedback, for example, visual or tactile. With practice,
the resulting motion appears more and more as if a
preloadedmotor program is being played—in control
theory terminology, this transition can be described
as moving from a closed-loop to an open-loop control
structure as learning occurs.

Clearly motor learning encompasses a much
broader range of issues than the ones touched upon
above. There are, for example, issues related to force
and compliance control, interaction with the envi-
ronment, integration of visual and other sensory
information—and perhaps the most difficult of all to
capture, at least in a mathematically precise way—
higher-level intelligence in learning. Our aim in this
paper is, however, quite specific: to emulate the low-
level capabilities of human motor coordination and
learning within the framework of optimal control
theory. Our approach is based on the simple obser-
vation that, in nearly all of the motor learning scenar-
ios that we have observed, some form of optimization
with respect to a physical criterion is taking place.

There is ample biological evidence to justify an
optimization-based approach to motor control and
learning. Indeed, in the literature one can find many
optimal control-based studies of various human mo-
tions, for example, maximum-height jumping,1 and
voluntary arm movements.2 In addition to the more

obvious optimization criteria likeminimumenergy or
control effort, strategies that involve minimizing the
derivative of acceleration (or jerk),3 as well as muscle
or metabolic energy costs,4 have also been examined
in the context of specific armmotions. Models for hu-
manmotor learning and control that take into account
both the muscle dynamics and features of the neural
system have been proposed in, for example, refs. 5–7;
ref. 8 presents an interesting study on the qualitative
dynamics of the sit-to-stand movement.

Extensive studies of the cerebellum and its role
in motor learning and control have also been per-
formed.9,10 Themost predominantmodels adopt a cy-
bernetic metaphor, in which the body is treated as a
machine that receives sensory inputs and generates
motor outputs. There are proponents of the equilib-
rium point hypothesis,11 which states that motions
are generated according to a potential field deter-
mined by the endpoints of the movement. Still oth-
ers have proposed that the nervous system performs
inverse dynamics to generate the motor commands.
Although a commonly cited counterargument to this
is that such a strategy places too great a computa-
tional burden on the nervous system, and that accu-
rate dynamic models are difficult to obtain, recent re-
searchalso shows that it is possible to identify accurate
internal models from movement data, and that such
strategies can be successfully implemented in robots
(see ref. 12 and the references cited therein). There
have also been aproaches to motor coordination and
learning based on intelligent control,13 as well as dis-
tributed and hierarchical approaches inspired by bio-
logical systems.14,15

From an engineering perspective, an optimi-
zation-based approach to motion generation usually
comes to mind as the first reasonable thing to try.
Past approaches have usually met failure, however,
because the complexity of the governing equations of
motion usually led to intractable optimization prob-
lems. One of the contributions of this paper is that by
appealing to techniques from the theory of Lie groups,
we can formulate the equations of motion of even
complicated multibody systems like the human body
in such a way as to render the optimization problem
tractable. In many cases the solutions can even be ob-
tained quite efficiently and in a numerically robust
way. The key, as we discuss below, lies in the ability
to compute exact analytic gradients of the objective
function, without resorting to expensive and inaccu-
ratenumerical approximations that are often the cause
of instability and lack of convergence.

With such motion optimization algorithms at
hand, it now becomes possible to realize the notion
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of a “motion compiler,” similar in function to a pro-
gramming language compiler. One view of a motion
program is as a concatenation of simplermotionprim-
itives, to which suitable scaling and timewarping can
be applied. The compiler’s role then is to optimize this
sequence of motion primitives with respect to some
performance criterion. In this sense the motion com-
piler can be viewed as a choreographer—it pieces and
blends a sequence of crude basic motions into a fluid
and artistic dance. In the context of this motion com-
piler paradigm, we see many potential uses for our
optimization tools. For example, motions generated
with our optimization algorithms can beused as train-
ing data for neural network–based learning schemes,
for example. Principal components of the optimized
motion can also be extracted and used to create prim-
itives for a richer motion vocabulary.

We begin by briefly describing the dynamic mod-
eling and optimization algorithms developed using
techniques from Lie group theory; some of the ba-
sic results specific to fully actuated serial chains
have been reported in ref. 22, 26. In this paper we
extend the class to include tree-structure mecha-
nisms with end-effector constraints, and to under-
actuated robots. We then illustrate a wide range of
optimized, “natural” motions for robots perform-
ing various human-like tasks, for example, power
lifting, diving, and gymnastics. Although our pri-
mary focus will be on generating minimum con-
trol effort motions, it should be evident that our
algorithms can be straightforwardly generalized to
other physical criteria. What is also apparent from
these examples is that in many cases the optimized
motions are remarkably similar to those performed
by their biological counterparts, notwithstanding the
results of previous investigations on human arm
motions.

2. GEOMETRIC MOTION OPTIMIZATION

For our representation of robotic systems and their
dynamics, we use a recently developed set of analyti-
cal tools for multibody systems analysis based on the
mathematics of Lie groups and Lie algebras.24,26 We
refer to our approach as a “geometric formulation” as
opposed to the “algebraic formulation” used by most
robotics researchers. In the traditional algebraic for-
mulation, a rigid motion can be represented with the
Denavit-Hartenberg (DH) parameters as a 4 × 4 ho-
mogeneous transformation T(θ , d), where θ is the ro-
tation about the z-axis and d is the translation along it.
For a prismatic joint, d varies while θ is held constant.

For a revolute joint, θ varies while d is held constant.
With the geometric formulation, for either type of joint
the transformation has the form

T(θ , d) = e AxM

where x= θ for a revolute joint or x= d for a pris-
matic joint, A contains the joint axis or direction,
and M is a constant (M= T(0, d) for a revolute joint,
M = T(θ , 0) for aprismatic joint). Thederivativeof the
latter form with respect to the joint displacement x is
just dT/dx= AeAxM. If one uses the DH parameters,
one must distinguish between joint types and carry
the derivatives through to the sine and cosine terms.
In the geometric version, one never has to consider
the sine and cosine terms. The simplicity and clarity
of the geometric version follows through to our com-
putations and makes new developments in dynamics
and motion optimization possible.

2.1. Kinematics

Our entire framework for robot design and motion
programming is based on an understanding of the ge-
ometry of rigid-body motions, or the Euclidean group,
hereafter denoted SE(3). Its subgroup SO(3) denotes
the groupof 3× 3proper rotationmatrices. Both SO(3)
and SE(3) have the structure of both a differentiable
manifold and an algebraic group, and are examples of
a Lie group.

As discussed in the previous section, one of our
principal tools in multibody systems analysis is the
matrix exponential mapping onto SE(3). Explicit for-
mulas for the map exp : se(3) → SE(3) and its inverse
log : SE(3) → se(3) can be derived24; here se(3) de-
notes the Lie algebra of SE(3). Although SE(3) is not a
vector space, se(3) is: the log formula provides a set of
canonical coordinates for representing neighborhoods
of SE(3) as open sets in a vector space.

The use of matrix exponentials to represent the
link-to-link transformations for robot systems allows
one to clarify the kinematic anddynamic equations. In
the case of open chains containing prismatic or revo-
lute joints, the forward kinematics can be written as a
product of matrix exponentials.16 Specifically, given a
choice of inertial and tool reference frames, and a zero
position for the mechanism, the forward kinematics
can be written uniquely as

f (q1, . . . , qn) = e A1q1 . . . e Anqn

where q1, . . . , qn are joint variables, and A1, . . . , An ∈
se(3). The kinematics of closed chains can be obtained
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by further adding a set of algebraic constraints.
The POE formula is an attractive way of system-

atizing results from classical screw theory, and more-
over brings powerful results from differential geom-
etry to bear on the study of mechanisms. Because the
POE formula is based on completely standard math-
ematical definitions and concepts, it eliminates the
complex rules and insight that is oftennecessary inun-
derstanding classical screw theory. It has the further
advantage of treating prismatic and revolute joints in
a uniformway, and does not suffer fromnumerical ill-
conditioning like theDenavit-Hartenbergparameters.

2.2. Dynamics

In order to determine optimal, natural motions for the
multibody systems of interest, a complete dynamic
model is needed.Within the fixed kinematic topology,
our motion compiler can vary the parameters of the
model to find the optimal motion, or motor program,
for whatever performance measure is selected. The
dynamic equations for an open kinematic chain can
be written in the form

M(q )q̈ + C(q , q̇ )q̇ + G(q ) = τ (1)

where q denotes the joint position vector, M(q ) is the
inertia matrix, and C and G represent the Coriolis/
centrifugal and gravity terms, respectively. In Park,
Bobrow, and Ploen,26 a Lie group formulation of the
dynamics has been developed, in which closed-form
expressions for the inertia matrix and Coriolis terms
are available that are particularly amenable to differ-
entiation. Using our representation, the forward and
inverse dynamics can also be computed efficiently
with O(n) recursive algorithms. The inverse dynam-
ics algorithm is shown in Figure 1. In this algorithm,
Vi ∈ se(3) is the linear and angular velocity of link i ,
W is the applied force andmoment, J is a 6×6matrix
ofmass and inertia, Si is the joint screw, andAdandad
are standard operators fromdifferential geometry.24 A
useful computational feature of this algorithm is that
no distinction must be made for revolute or prismatic
joints.

2.3. Motion Optimization

We assume that the generation of the motor pro-
gram involves the minimization of a cost function of
the form

Minimize
τ(t)

J = �(q , q̇ , t f ) +
∫ t f

0
L(q , q̇ , τ, t) dt

• Initialization

V0 = V̇0 = Wn+1 = 0

• Forward recursion: for i = 1 to n do

Ti−1,i = MieSi qi

Vi = AdT−1
i−1,i

(Vi−1) + Si q̇i

V̇i = Si q̈i +AdT−1
i−1,i

(V̇i−1)

+
[
AdT−1

i−1,i
(Vi−1), Si q̇i

]

• Backward recursion: for i = n to 1 do

Wi = Ad∗
T−1
i,i+1

(Wi+1) + J i V̇i − ad∗
Vi (J iVi )

τi = STi Wi

Figure 1. The POE recursive Newton-Euler inverse dy-
namics algorithm.

(2)
subject to (1)

and q (0) = q0, q̇ (0) = 0 (3)
q (t f ) = q f , q̇ (t f ) = 0, (4)

where, for some of our examples, � penalizes devia-
tions from the desired final condition. For most of our
examples, the effort L = 1

2‖τ a‖2 captures the desire to
minimize the joint torques. The final time t f may be
either free or fixed in our formulation.

A local solution to the preceding optimal con-
trol problem is found by assuming that the joint co-
ordinates q (t) in (1) are parameterized by B-splines,
and varying these parameters in the following man-
ner. The B-spline curve depends on the blending,
or basis, functions Bi (t), and the control points P =
{p1, . . . , pm}, with pi ∈ n. The joint trajectories then
have the form q = q (t, P) with

q (t, P) =
m∑
i=1

Bi (t)pi (5)

An example of a trajectory and the basis functions is
shown in Figure 2. The control points pi of the spline
have only a local effect on the curve geometry (see
Chapter 6 in ref. 17), so given any t there will a maxi-
mum of four nonzero Bi (t) in (5) for a cubic spline.
In addition, the convex hull property of B-splines
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Figure 2. An example trajectory generated as the sum of
cubic B-spline basis functions. The dotted lines are the cubic
basis functions.

makes them useful for smoothing or approximating
data. The fact that

∑m
i=1 Bi (t) = 1 also gives the de-

sirable property that limits on joint displacements can
be imposed through limits on the spline parameters
pi . That is, if one constrains pi ≤ q̄ , then it follows
that q ≤ q̄ .

We should note that the use of B-spline polyno-
mials as the basic primitives upon which all of our
motions are developed is consistent with recent re-
sults in neuroscience. In ref. 23, it was observed clin-
ically that when human subjects move their hand
in a circular motion, the trajectory obtained can be
best described as a summation of “bell shaped” ba-
sis functions. These functions are then translated
and scaled to find the best match to the human
movement. We are achieving the same basic effect
through (5).

The parameter optimization equivalent of the
original optimal control problem is

Minimize
P

J (P) = �(P, t f ) +
∫ t f

0
L(P, t) dt (6)

subject to q ≤ pi ≤ q̄ , i = 1 . . .m (7)

With this approach, τ = τ(P, t); q , q̇ , and q̈ all aregiven
functions of t and P from (5) and its time-derivatives,
andhence τ is an explicit function of the spline param-
eters through (1). By the proper choice of the spline
basis functions at both ends of the joint trajectory, the
path-end conditions (3) and (4) can be satisfied.

We have converted the original problem into a pa-
rameter optimization problemwith no nonlinear con-
straints, and efficient quasi-Newton algorithms can
then be used to solve the problem. However, for as-
sured convergence of these algorithms, two condi-
tionsmust bemet: the secondderivatives of J(P)must
be bounded, and every approximate Hessian (found,

for example, from a BFGS update25) used in the quasi-
Newton algorithmmust remain positive definite with
bounded condition number.18

Due to the complexity of the dynamic equations
of motion, most previous solutions to nontrivial op-
timal control problems for robotic systems use finite
difference gradient approximations of J(P). In these
cases, it is usually not possible to ensure a bounded
condition number of the approximate Hessian, and
the algorithms usually terminate prematurely. In or-
der to compute the gradient of the cost functional, we
note that

∇P J =
∫ t f

0
τ T · (∇Pτ) dt (8)

The most significant step for this gradient is comput-
ing the derivatives of the joint torques with respect to
the path parameters P . We compute these derivatives
analytically by differentiating the recursive dynamics
shown in Figure 1. The resulting recursive algorithm
for the gradient is shown in Figure 3.

• Initialization

dV0
dpi

= dV̇0
dpi

= dWn+1
dpi

= 0, ∀pi ∈ P

• Forward recursion: for i = 1 to n do

dVi
dpi

= dqi
dpi

adAd
T−1
i−1,i

(Vi−1)Si +AdT−1
i−1,i

dVi−1
dpi

+ Si
dq̇
dpi

dV̇i
dpi

= dqi
dpi

adAd
T−1
i−1,i

(V̇i−1)Si +AdT−1
i−1,i

d V̇i−1
dpi

+ ad dVi
dpi

Si q̇i + adVi Si
dq̇i
dpi

+ Si
dq̈
dpi

• Backward recursion: for i = n to 1 do

dWi

dpi
= J i

dV̇i
dpi

+Ad∗
T−1
i,i+1

dWi+1
dpi

− ad∗
dVi
dpi

J i Vi − ad∗
Vi J i

dVi
dpi

− ad∗
AdMi+1 Si+1

dqi+1
dpi

Ad∗
T−1
i,i+1

Wi+1

dτi

dpi
= STi

dWi

dpi

Figure 3. The POE recursive derivative Newton-Euler
inverse dynamics algorithm.
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3. SOME SAMPLE MOTIONS

3.1. Planar Weightlifter

Our algorithms have been used to generate optimized
motions for several problems (see refs. 19, 21, and 22
for more details). As a first example, we examine a
5R planar model of a weightlifter using realistic link
lengths and mass properties, as shown in Figure 4.
The initial, improper, lifting technique is shown in the
Figure 4(a), with the optimized lift in Figure 4(b). All
joints had equal weighting in the cost functional, and
the back joint produces most of the torque load in the
original lift. This load was taken up more by the leg
joints in the optimized lift. Figure 4(c) shows that the
integral of the cost function was reduced by an order
of magnitude from the original. The major savings in
effort comes from reducing the torque applied at the
beginning of the motion by the back, and the torque
applied in the middle of the motion by the shoulders.
Of course, the lifter also passes the weights through
its knees, which points out the need for adding barrier
avoidance to the optimization problem. The path for
thisproblemwasa5-knot, uniformcubicB-spline. The
initial and final costs J(P) for the weightlifter were
2.25× 107 and 1.44× 106 respectively. The optimiza-
tion took approximately 120 seconds to compute on
an SGI Indigo 2 running at 150 Mhz.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5 x 107

time, in seconds

Initial motion
(a)

Similar to Olympic lift “the snatch”
(d)

Optimized motion
(b)

One pump, tf � 2.0 s, J � 1.76 � 104

(e)

Cost J for motions in (a) and (b)
(c)

Two pumps, tf � 3.5 s, J � 1.77 � 104

(f)

Figure 4. Amodel weightlifter. (a) is the initial trajectory. (d–f) are local minima found for the free end time problem with
free initial joint configurations.

In the sequence of plots in Figures 4(d–f), the
weightlifter problem was solved again with the ini-
tial angles free and an added Cartesian constraint that
keeps thehands touching theweights at the beginning
of the motion. This solves the kinematic redundancy
problem in a manner that is optimal for the motion
requirement. Figure 4(d) looks similar to the Olympic
lift known as “the snatch”—the only difference is that
in the snatch the lifter pauses with the weight over
his head before lifting with his legs. Figures 4(e) and
(f) are local minimizers with different final times; the
latter motion has an extra oscillation in which energy
is pumped into the system.

3.2. Cooperating Robots—The Rising Camel

Asasecondexample, consider the systemof twocoop-
erating robot arms lifting a workpiece or two fingers
graspinga commonobject, shown inFigure 5. The task
is to lift the 55 kg object from the initial position shown
in the left frame to the final position shown in the right
frame. The initial path is specified from intuition as a
straight line, as shown in Figure 5(a). The final op-
timized path is shown in Figure 5(b). There is more
than an order of magnitude reduction for the second
sequence as compared to the first, with J = 5.5× 107

for the first motion and J = 1.2× 106 for the second
motion. It is interesting that the final motion uses the
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(a)

(b)

Figure 5. Cooperating robot problem, comparison of (a) original and (b) final motions.

singularities in the closed chain for leverage, rather
than trying to avoid them as is common in robotics re-
search. The optimized path looks remarkably similar
to the motion that the torso of a large animal such as
an elephant or camel would make to stand up.

3.3. Robot Power Lift

Application of the algorithm to a real robot requires
accurate modeling of the manipulator dynamics, fric-
tion, joint velocity limits, and actuator torque bounds.
In ref. 19, the quantity −wpw , where pw is the pay-
load and w is a constant weighting factor, was added
outside the integral of the cost function in (6). This
term expressed our desire to maximize the payload
lifted by a Puma 762 robot.We added hard constraints
into the optimization to handle the velocity limits,
and soft constraints to handle the torque limits. The

 1  0.8  0.6  0.4  0.2 0 0.2 0.4 0.6 0.8 1

 1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

 1  0.8  0.6  0.4  0.2 0 0.2 0.4 0.6 0.8 1

 1

 0.8

 0.6

 0.4

 0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 6. (a) Initial and (b) final configurations of the
Puma.

manufacturer’s specifications state that a maximum
load of 20 kg can be lifted at a distance of 25 cm
from the center of its wrist. The payload is mod-
eled as an ideal plate. The trajectories of the Puma’s
six joints were parameterized by uniform quintic
B-splines.

Three different cases (of one dof, three dofs, and
six dofs) are discussed, where

one dof: the fourth joint is the only joint with freedom
to move;

three dof: the last three joints (wrist) are set free while
the others are fixed; and

six dof: all six joints are free.

In each case, the optimization procedure is initial-
ized with pw = 20 kg, t f = 20 sec, and a prescribed
path that moves the fourth joint from the initial con-
figuration to the final one, shown in Figure 6, on a
smooth trajectory without any swing and any move-
ment of the other joints. The solutions to the opti-
mization problem for the three cases are shown in
Table 1 and Figures 7–9. The resulting paths are mo-
tions that routinely swing through singular configura-
tions. These motions were successfully implemented
on our Puma 762 robot. Using the six-dof trajectory,
we effectively tripled the payload limit specified by the
manufacturer.

Table I. The optimal results for three cases.

Case Initial J c Final J c Final time Payload

one dof −24.2 −42.5 7.8 sec 29.4 kg
three dof −4.15 −21.1 3.1 sec 46.0 kg
six dof −181.0 −600.1 11.9 sec 63.2 kg
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Figure 7. The motion, speed and torque of the fourth joint in the one-dof case (limits: dotted lines).

Figure 8. The motion of the wrist in the three-dof case. Figure 9. The motion for the six-dof case.

792
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Figure 10. The structure of the humanoid in KIST.

Another application of robot power lifting that
we investigated involves a humanoid robot recently
developed at the Korea Institute of Science and
Technology.20 The robot, shown in Figure 10, consists
of two seven-dof arms, a two-dof waist, and a two-
dof neck. Since the structure of the robot is tree type,
the dynamics and its derivative, shown in Figures 1
and 3, cannot be used directly in this structure. How-
ever we can easily extend them to the tree-type struc-
ture by replacing the subscripts i−1 and i+1 with λi

and µi , which represent the precedent and descendant
links, respectively. The task is to lift the 5 kg dumbbell
with the right arm, and the resulting motion is shown
in Figure 11. Altering the constraints imposed on the
maximum joint torques, joint limits, and so on, will
alter the motion slightly, but overall it seems that the
optimized path very closely resembles the motion of
human arms.

Figure 11. Snapshot of the dumbbell-lifting humanoid.

q1

q2

q3

q4

q5

q6

q7

Base frame

Figure 12. Planar diver model.

3.4. Underactuated Robots—The Diver

The same basic strategy used in the preceding exam-
ples can be applied to systemswith passive degrees of
freedom. However, the dynamics become more com-
plicated since the motion of the passive joints cannot
be prescribed directly with B-splines. In ref. 21, the
extension to underactuated robots is developed. Con-
sider the case of a planar model of a high diver, as
shown in Figure 12. This is similar to the diver ana-
lyzed by Crawford and Sastry.15 We have connected
the diver to a fixed base position using three passive
joints (two prismatic and one revolute joint). These
passive joints exert no force on the diver, allowing
the diver to perform as a free flying body. In order to
make the diver perform a forward 112 somersault, we
chose a cost function of the form

J = c1(q3(t f ) − 3π)2 + c2

∫ t f

0
‖τ‖2 (9)
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Figure 13. Forward 1 12 somersault.

where the first term penalizes any deviation from the
desired entry angle and the second term penalizes the
effort required to complete the motion. The resulting
dive is shown in Figure 13. The human-like features
of this dive again demonstrate the potential of our
algorithms for use in more complex motion planners.

4. CONCLUSIONS

In this paper, we have presented a methodology for
generating robotmotions that areoptimalwith respect
to physical criteria. By appealing to techniques from
the theory of Lie groups, efficient optimization algo-
rithms can be obtained for a wide variety of mecha-
nisms, including open and closed chains, overactu-
ated and underactuated systems, and so on. Aside
fromtheir independentuse, these algorithmscan form
the basis for instilling in robots the ability to emulate
the low-level capabilities of human motor coordina-
tion and learning, that is, a “motion compiler.” In this
context, some potential applications for our optimiza-
tion algorithms include using the optimized motions
as training data for, neural network–based learning
schemes, for example. While our algorithm produces

reliable and physically plausible solutions, the com-
putational requirements are still significant; using the
optimizedmotions as trainingdata formore advanced
learning schemes appears to be a promising approach
to generating motions in a more computationally effi-
cient way.

Although the primary focus in our examples has
been on minimum control effort motions, our op-
timization algorithms can, with modest effort, be
straightforwardly modified to handle other physical
criteria. In this aspect, they can serve as a useful sim-
ulation tool for researchers studying biological motor
control—by including, for example, the muscle dy-
namics in the description of the equations of motion,
various hypotheses regarding biological motions can
be tested via simulation.
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