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In this paper we present a practical method for finding obstacle-free minimum-time mo-
tions for manipulators subject to the limits of velocity-dependent actuator forces. An op-
timal motion-planning problem is converted into a finite-dimensional nonlinear pro-
gramming problem by means of parameter optimization with quintic B-splines. We
introduce the concept of the minimum-overload trajectory in which the motion time is
specified to be faster than the actuators can handle, and the actuator overloads are mini-
mized with the motion time fixed. By successive searches for minimum-overload trajec-
tories, minimum-time motions are determined for three example manipulators without
simplifying any of the kinematic, dynamic or geometric properties of the manipulators
or the obstacles. In the resultant minimum-time motions, almost all of the joint actuators
are close to saturation during the motions. © 2005 Wiley Periodicals, Inc.

1. INTRODUCTION

In the past two or three decades, determination of
minimum-time motions for manipulators has been an

active area of research in robotics because minimum-
time motions yield high productivity and efficiency,
especially when they are executed repeatedly. This
subject is roughly divided into two categories accord-
ing to the tasks manipulator arms should fulfill.
These categories are characterized by motions with or
without geometric path constraints.
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If the geometric path of the end-effector of a non-

redundant manipulator is predetermined, the motion
has 1 degree of freedom (DOF) and can be repre-
sented by a scalar path variable. In this case, rigorous
solutions were obtained subject to constant bounds
on the actuator forces.1,2 Later, studies were extended
to cases where the path included a certain singular
points on it,3 or actuator jerks as well as actuator
torques were limited within constant bounds,4 or
joint velocities and end-effector velocity were
bounded additionally.5

Most manipulator tasks, except arc welding,
painting or cutting, etc., are essentially motions with-
out geometric path constraints. In this case obstacle
avoidance should be considered simultaneously with
time minimization. These kinds of manipulator mo-
tions have the same DOF as the number of joints and
minimum-time motions are more complicated than
above. The subject of our study is in this category.

Various kinds of methods have been developed
to solve the minimum-time optimal control problem
with obstacles. Traditional optimal control theory,6–9

nonlinear programming,10–12 dynamic programing,13

tessellation of joint14 or configuration space,15 or a
mixture of them16,17 are the main techniques used. By
applying optimal control theory, Pontryagin’s maxi-
mum principle leads to a two-point boundary value
problem. Some researchers have tried to solve these
equations directly6,8 and others have tried to solve
them through parameter optimization.17 Though the
theory and the solutions are rigorous, it has been
used to solve for motions for 2- or at most 3-link pla-
nar manipulators due to the complexity and the non-
linearity of the manipulator dynamics.

Approximation methods, though the solutions
cannot be proved to be optimal, have been studied to
obtain the solutions for 3 or more DOF spatial ma-
nipulators. These approximation methods are
roughly divided into two groups according to
whether they utilize gradients or not. Most algo-
rithms based on nonlinear programing use gradients
to find optimal motions efficiently.10–12,18,19 For stable
convergence, objective functions and constraints
must be locally convex and their first derivatives
must be continuous. Numerically calculated gradi-
ents have been used to find minimum-time
motions,11 but the simulation model was a 3-link spa-
tial manipulator in the presence of relatively simple
obstacle model. Later, analytically calculated gradi-
ents were used to minimize actuator torques for vari-
ous multi-body systems18 or spatial 6-link
manipulators.19 But torque or energy minimizations

show more stable convergence properties than
minimum-time motions because the motion time is
fixed.

Other approximation methods not utilizing gra-
dients are mainly based on (1) approximations in
small time-intervals12,13,17 or (2) discretization
(tessellation)14–16 of joint or configuration space. The
former takes less CPU time but may accumulate nu-
merical or modeling errors in the small time-intervals
to lower the accuracy of results. The latter assures
stable convergence but CPU time may increase expo-
nentially for refinement of tessellation.

Because of the complex dynamics and kinematics
of robot manipulators, various assumptions or sim-
plifications were introduced for the purpose of online
implementation or simplification of the algorithms.
As geometric simplifications, obstacles have been
ignored7,10,13,17,20 or modeled as circles9,12,14 or as fi-
nite surface points16 and robot links were modeled as
lines9,14,20 or as finite surface points12 or as
ellipsoids.16 As kinematic simplifications, motions
were restricted in a plane8,9,14,20,21 or the orientation of
end-effector was ignored12,15 or joint velocity
profiles10 or joint acceleration profiles13,16,22 were pre-
specified. As dynamic simplifications, manipulator
dynamics was ignored subject to the only kinematic
constraints.10,21,22 To the best of our knowledge the
minimum-time motions for 6 or more DOF manipu-
lators or multiple robot arms have not yet been ob-
tained without simplifying any of the geometric, ki-
nematic or dynamic models of manipulators or
obstacles.

In our study we transform the optimal control
problem in function space into a nonlinear program-
ing problem in a finite-dimensional vector space.
Joint displacements are represented by linear combi-
nations of finite-term quintic B-splines. If sufficiently
many terms are used, with a proportional (not expo-
nential) increase of CPU time, the result will be the
exact solution. Using numerically calculated gradi-
ents, the coefficients of the splines are obtained op-
timally.

The novel contribution in this study is the con-
cept of the minimum-overload trajectory with total mo-
tion time fixed. Minimum-time motion is defined rig-
orously with this concept and it is found successfully
by sequential searches for minimum-overload trajec-
tories. In the minimum-overload searches, the con-
vergence is quite stable because the performance in-
dex and all constraints are locally convex and smooth
and because the total motion time is fixed.

To compute the minimum-overload trajectory,
the total motion time is, at first, specified to be too
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fast, so that the actuators need more force than they
can produce. Then, using an efficient numerical op-
timization, the actuator overloads are minimized
during the motion. Using the information obtained
from the minimum-overload trajectory, we predict
the motion time of the next minimum-overload
search. These successive searches continue until the
least time is found when the minimum overload van-
ishes.

Obstacle information is evaluated with penetra-
tion growth distances23 and its avoidance is achieved
by a penalty term included in an augmented perfor-
mance index. The usefulness of the penetration
growth distance will be shown in simulation results.
Full geometric, kinematic and dynamic models of a
spatial 6-link manipulator and obstacles are consid-
ered in this study. The effects of friction are the only
variables ignored.

The manipulator dynamics is calculated by the
outward and inward iteration method.24 This itera-
tion method needs the only joint-by-joint recursive
calculations and accumulates little error. In addition,
it is applicable without knowing the equations of mo-
tions explicitly in higher DOF models. On the other
hand, in optimal control approaches, the differential
equations of motion are solved numerically and this
is difficult since errors accumulate for higher DOF
models.

In most other studies, constraints on the actuator
forces are constant regardless of joint velocities. It is
more practical that the bounds of actuator forces are
dependent on joint velocities as was done in this
study. Example applications to a planar 2-link, a spa-
tial 3-link and a 6-link Puma 560 manipulator in the
presence of polyhedral obstacles demonstrate the ef-
fectiveness and the numerical stability of this algo-
rithm.

2. MINIMUM-TIME MOTIONS OF CONTINUOUS
SYSTEM

The equations of motions for a manipulator arm are

t5M~u!a1v~u ,v!1g~u!, (1)

where t is generalized actuator forces (n31), M is in-
ertia matrix (n3n), u, v and a are generalized joint
displacements, velocities and accelerations (n31), v
is centrifugal and coriolis forces (n31), and g is
gravitational forces (n31).

To find minimum-time motions, the following
performance index is minimized:

J5E
0

T
dt5T , (2)

where T is the total motion time.
In most practical cases, the limits on the actuator

forces are dependent on the joint velocities. In this
study, we consider actuator bounds of the form
shown in Figure 1. In this case the constraints on the
actuators are

utu<2Wmuvu1tc , (3)

where utu, uvu are absolute values of the elements (n
31) and Wm is constant diagonal matrix whose prin-
cipal diagonal elements are (tc) i /(vc) i (i51,...,n),
and tc is the actuator limit vector (n31) defined in
Figure 1.

If we define the equivalent actuator forces te as

te5utu1Wmuvu (4)

then the actuator constraints (3) become

te<tc . (5)

To formulate obstacle avoidance constraints, we use
Ong and Gilbert’s growth function.23 We briefly re-
view the approach here. Assume there exists a convex
object A in a three dimensional workspace. The object
is defined as a set of all the points inside and on the
surface of a rigid body. Let pA be an arbitrary point
(seed point) fixed inside A. Then a growth model GA(s)
is defined as

GA~s!5$yuy5pA1s~x2pA!,xPA%, (6)

Figure 1. Actuator characteristics of one joint.
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where s is a non-negative scalar.

Let there exist another convex object B in the
same workspace and let GB(s) be the growth model
of B w.r.t. a seed point pB fixed inside B. Then a growth
function s0 (A, B) is defined as

s0~A,B!5min$suGA~s!ùGB~s!ÞB%. (7)

The growth function can be calculated by linear pro-
graming if A and B are convex polyhedra. The di-
mension of this linear programing problem is 4, thus
the active set method25 is efficient for such a low dimen-
sional LP problem.

Let there exist m static obstacles in a workspace.
We assume that all the obstacle models O1 ,. . . ,Om and
link models R1(t),. . . ,Rn(t) are convex polyhedra.
However, nonconvex models are permissible if they
can be decomposed into multiple convex models. If
the growth function s0 of a link model Ri and an ob-
stacle model Oj is less than one, one model penetrates
into the other and the following penetration growth dis-
tance Dij indicates the amount of penetration:

Dij5~di1dj!$12s0~Ri ,Oj!%1 , (8)

where di and dj are appropriate positive real numbers
that represent the actual geometric sizes of Ri and Oj ,
respectively, and the plus operator is defined as

$d%15H d , if d>0

0, if d,0
, (9)

In general, the penetration growth distance is not
equal to the minimum translational distance separat-
ing the objects. From the above notation, the obstacle
avoidance constraints become

D50, ;tP@0,T# , (10)

where D is a matrix (n3m) whose elements are Eq.
(8).

Motions at the start and the goal positions are
specified as

u~0 !5us , u~T !5u f , (11)

v~0 !5vs , v~T !5v f , (12)

a~0 !5as , a~T !5a f . (13)

The acceleration conditions (13) are given to assure
smooth motions at the start and the goal positions.

The minimum-time problem for a continuous
system can be stated as

Find u(t) which minimizes T subject to (1), (5),
(10) and (11)–(13).
This optimal motion-planning problem will be trans-
formed into a finite-dimensional nonlinear program-
ing problem in the following sections.

3. FINITE-DIMENSIONAL JOINT TRAJECTORIES

An infinite number of linearly independent basis
functions form a complete set in a function space and
this set can represent an arbitrary piece-wise continu-
ous function defined on a closed interval. A finite
number of them can express a piece-wise continuous
function approximately. Many researchers have used
cubic B-splines as the basis functions. In this research,
however, quintic B-splines26 are used.

Both splines play almost the same role when they
are used in robot motion planning. The trajectories
expressed by quintic B-splines, in spite of more com-
putational burden, have some merits. (1) Accelera-
tions and jerks are continuous third and second order
polynomials, (2) they can express various kinds of
displacement functions more accurately, (3) they have
wider range of feasible directions if used in nonlinear
programing and (4) for a given number of basis func-
tions, the optimal performance indices are usually
less than that found using cubic B-splines.

The quintic B-spline used in this research is

Bj~s !5~ 1
120!@$s2~ j23 !%1

5 26$s2~ j22 !%1
5 115$s2~ j

21 !%1
5 220$s2j%1

5 115$s2~ j11 !%1
5 26$s2~ j

12 !%1
5 1$s2~ j13 !%1

5 , sP@2` ,`# , (14)

where j is an arbitrary integer. The basis function
Bj(s) is positive for j23,s,j13 and zero otherwise.
The nodal values of Eq. (14) and its s-derivatives are
listed in Table 1.

If we choose the parameter s-interval [0, k] to ex-
press joint trajectories in the time interval [0, T], then
k15 splines B22(s),. . . ,Bk12(s) have nonzero values
in [0, k]. The joint trajectories are expressed by the lin-
ear combinations of the k15 splines as

u~s !5CB~s !, (15)

s5bt , (16)

where s is a dummy variable connecting joint vari-
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ables with time, C is a coefficient matrix (n3k15),
B(s) is a column vector (k1531) whose elements are
B22(s),. . . ,Bk12(s), and a time-scale factor b
(5k/T) defines the motion time, thus k remains con-
stant even though the motion time varies.

Differentiating Eq. (15) w.r.t. time,

v~s !5bCB8~s !, (17)

a~s !5b2CB9~s !, (18)

where the primes (8,9) mean differentiation w.r.t. s .
The initial and the final motion conditions (11)–

(13) can be used to reduce the dimension of the co-
efficient matrix. By the algebraic manipulation de-
scribed in the Appendix Section 8.1, the joint
trajectories satisfying the initial and the final motion
conditions are written as

u~s !5Fs~s !1CmBm~s !1Ff~s !, (19)

where the boundary condition splines Fs(s) and
Ff(s), each dimension is (n31), can be determined
from the initial and the final motion conditions. Cm is
the reduced coefficient matrix (n3k21) and Bm(s) is the
reduced B-spline basis functions (k2131).

The velocities and the accelerations are

v5b@Fs8~s !1CmBm8 ~s !1Ff8~s !# , (20)

a5b2@Fs9~s !1CmBm9 ~s !1Ff9~s !# . (21)

Equation (19) together with (16) means that arbitrary
joint trajectories subject to the initial and the final mo-
tion conditions are represented approximately by a
point in an n(k21)-dimensional linear vector space
defined by the reduced coefficient matrix Cm .

4. MINIMUM-OVERLOAD TRAJECTORIES

4.1. Performance Index

The basic approach used in our study requires that
we iteratively find minimum-overload trajectories
with the motion time fixed. In this section the actua-
tor constraints (5) are no longer treated as constraints,
but as the factors to define the following overload of
trajectories:

Jc5
1
T E

0

T
ipi2

2dt , (22)

where i•i2 means Euclidean norm and p is an actua-
tor overload vector whose elements are

~p! i5H ~te! i

~tc! i
21J

1

, i51,.. . ,n , (23)

where the plus operator is defined as Eq. (9).
To obtain obstacle-free minimum-overload trajec-

tories, we treat the obstacle avoidance constraints as
the penalty term in nonlinear programing, thus the
augmented performance index becomes

J5Jc1woJo , (24)

where wo is a sufficiently large weighting coefficient,
and Jo is defined as

Jo5
1
T E

0

T

(
i51

n

(
j51

m

Dij
2 dt . (25)

The obstacle-free minimum-overload trajectories
with the motion time fixed can be stated as

Find CmPRn(k21)) which minimizes (24) subject
to (1) and (19)–(21).

Table I. Nodal values of Bj(s) and its derivatives.

Nodes(s) j23 j22 j21 j j11 j12 J13

Bj(s) 0 1
120

26
120

66
120

26
120

1
120 0

Bj8(s) 0 1
24

10
24 0 2

10
24 2

1
24 0

Bj9(s) 0 1
6

2
6 2

6
6

2
6

1
6 0
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4.2. Optimization Using a Quasi-Newton Method

By assigning arbitrary specific values to Cm , we can
calculate the objective functional (24) and along suc-
cessive search directions determined by the BFGS
algorithm,27 we find the optimal Cm . The details are
described as follows.

The s-interval [0, k] is divided into l equal sub-
intervals; Ds and Dt are k/l and T/l , respectively. All
the following variables are calculated at every l11
nodal points. Using the initial and the final motion
conditions (11)–(13) together with appropriately cho-
sen constants k and T , we calculate (A20), (A22),
(A23) and their s-derivatives. Assigning arbitrary ini-
tial values to Cm , the joint trajectories (19)–(21) are
calculated. Applying the manipulator dynamics (1)
which is calculated by the outward and inward itera-
tion method,24 the actuator forces and the equivalent
forces (4) are calculated. The penetration growth dis-
tance (8) between every link and obstacle is obtained
by the active set method.25

Using all of the above data at the l11 nodal
points, together with an appropriately chosen wo , the
objective functional (24) is calculated with the trap-
ezoidal area integral formula. The gradients are then
calculated by the following central difference
method:

~G! ij>
J~~Cm! ij1d!2J~~Cm! ij2d!

2d
,

i51,.. . ,n ,j51,.. . ,k21. (26)

The B-spline basis functions have some merit at this
point. In other words, since the B-spline function is
nonzero in a small interval, the increments of the ob-
jective functional in the small interval are the only
data needed to calculate the corresponding compo-
nent of the gradient. This gradient (n3k21) should
be rearranged to a vector (n(k21)31) to calculate
search directions using the BFGS method.27 A line
search is then performed using the golden section
search method.27

The convergence criterion is

~J i21
0 2J i

0!/J i21
0 <« J , (27)

where J i
0 is the minimum value of (24) along the ith

line search. We can also check that the gradient is
nearly zero at the optimal point.

4.3. Global Search in an Obstacle Field

The numerical optimization described above can be
modified to search for the global minimum time path
in a given obstacle field. The modification involves
repeating the search after changing the position of the
seed points within the obstacles defined in Eq. (6).
Since the growth function is defined as Eq. (7), the
path is updated during the optimization so that the
Euclidean distances between the seed points of the
link models and the obstacles increase. If we locate
the seed point of an obstacle model in an inner corner
of the model, the links tend to avoid the obstacle by
turning around the opposite vertex. By changing the
locations of seed points, we can find all the local
minima and can choose the global one that has the
least minimum overload. Although we have no proof
that this method will always produce the global mini-
mum time path, it has for all of the examples we have
solved, including those discussed in this work.

4.4. Other Computational Issues

Another merit of this algorithm is that initial motions
may be arbitrary regardless of obstacles. For fast con-
vergence, however, it is helpful to minimize the fol-
lowing error norm.

Find an initial Cm that minimizes

J ini5E
0

T
iu2upi2

2dt , (28)

where u is defined by Eq. (19) and up is a fifth degree
polynomial satisfying the initial and the final motion
conditions (11)–(13), (see the Appendix Section 8.2).
This minimization process is not a dynamic problem
but only a kinematic one and takes little CPU time.

The parameters di and dj in Eq. (8) are the radii
of the minimum circumscribed spheres of the two
models. The constants k and l are set to 15 and 75,
respectively. k has an effect on the accuracy of the
joint trajectory and l on the accuracy of the trapezoi-
dal area integral. d and « J are assigned to 1027 and
10212, respectively, with the computations done in
double precision.

5. MINIMUM-TIME MOTIONS

If the models of a manipulator and obstacles are de-
fined and the actuator characteristics are specified,
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the minimum overload Jc

0 in (22) is a function of mo-
tion time T , thus we can define the minimum time as
follows.

Definition (Minimum time): The minimum time
T0[min$TuJc

0(T)50%.
Theorem: For an obstacle-free point-to-point ma-

nipulator motion, if T,T0, then the minimum over-
load Jc

0(T).0. If T>T0, then Jc
0(T)50.

Proof: For T,T0, and the fact that Jc(T) in (22) is
non-negative, the above definition implies that
Jc
0(T).0. For T>T0, and the fact that Jc

0(T) in (22) is
a monotonically decreasing function of T , Jc

0(T0)
50, and must remain zero for all T>T0.

5.1. Motion Times of Subsequent Searches

The theorem shows that as we increase the motion
time T , starting from a time less than T0, at some
point we will achieve T0 if such a time exists. Thus,
a simple line search can be used to find T0. However,
we achieved superior performance with the follow-
ing heuristic algorithm.

To obtain Tj11 for the next minimum-overload
search, we must consider the most overloaded joint at
the jth minimum-overload trajectories.

First, compute the saturation rates as

ht5 I 1
T E

0

T
rtdt I

`

, (29)

hv5 I 1
T E

0

T
rvdt I

`

, (30)

where i•i` of a vector is defined as the maximum of
absolutes of all elements. The elements of the vectors
rt and rv are

~rt! i5~ utu! i /~tc! i , i51,.. . ,n , (31)

~rv! i5~ uvu! i /~vc! i , i51,.. . ,n . (32)

Next, compute the overload rate ho at the same trajec-
tories as

ho5iroi` , (33)

where the elements of the vector ro are

~ro! i5
1

~T1! i
E

0

T ~te! i

~tc! i
d~t1! i , i51,.. . ,n , (34)

where (t1) i denotes the time when ith actuator is
overloaded, thus

~t1! i5H t , if ~te! i.~tc! i ,

0, if ~te! i<~tc! i ,
i51,.. . ,n (35)

and the vector T1 denotes as follows:

T15E
0

T
dt1 . (36)

In a numerical implementation, Eq. (34) can be ap-
proximated by the simple mean value of (te) i /(tc) i
at the time-nodes when ith actuator is overloaded.

Finally Tj11 is obtained by the following formula:

Tj115TjH cRS ht

ht1hv
ho

1/21
hv

ht1hv
ho21 D11J ,

(37)

where cR is a coefficient governing the speed of con-
vergence, that is, if it is near 1, the search converges
fast but may be unstable and, if it is near 0, the search
converges slowly but is stable. In this study 0.7 or 0.8
is used for cR .

In order to explain the heuristic used for Eq. (37),
note that if the motion time of jth search is much
smaller than expected minimum time, ht is much
more than hv on the jth minimum-overload trajecto-
ries, thus the actuator forces make a much greater
contribution to the overload rate ho than the joint ve-
locities. On the other hand, if the motion time is near
the expected minimum time, ht is almost the same as
hv , thus the actuator forces and the joint velocities
make almost equal contributions.

For a linear motion of a particle traveling a fixed
distance in constant acceleration, the force is in-
versely proportional to the motion time squared and
the velocity is inversely proportional to the motion
time. Extending this reasoning, if the overload rate ho
is influenced by the actuator forces only, Tj11 should
be increased to Tj(ho)1/2. On the other hand, if it is
influenced by the joint velocities only, Tj11 should be
increased to Tjho . Thus Eq. (37) is probably the most
reasonable way to determine Tj11 . However, Eq. (37)
is not the only way but the problem is convergence
speed.

5.2. Other Computational Issues

To improve the numerical stability of the algorithm,
the weighting coefficient wo in (24) is updated at each
subsequent search according to the rule

J-k. Park and J. E. Bobrow: Reliable Computation of Minimum-Time Motions • 7
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~wo! j115~wo! jA~Jo
ini! j11 /«o

~Jc
ini! j11 /«c

, j51,.. . , (38)

where (Jo
ini) j11 and (Jc

ini) j11 are those obtained from
the initial motions of the j11th search. These initial
motions are not the one described in Section 4.4 but
the jth minimum-overload trajectories after the mo-
tion time has been increased by Eq. (37). A large value
for wo ensures that there is no collision with obstacles,
whereas a small value yields faster convergence of
the optimization. The tolerances «o and «c are values
of Jo

0 and Jc
0 , respectively, used to accept a minimum-

overload trajectory as an obstacle-free minimum-time
motion. Thus, the convergence criteria for obstacle-
free minimum-time motions are

Jo
0<«o , Jc

0<«c . (39)

These convergence criteria are tested at the end of ev-
ery minimum-overload search. In the numerical
simulations, 1027 and 1025 are used as «o and «c , re-
spectively.

6. SIMULATIONS

6.1. Example 1 (Planar 2-Link Manipulator)

The first example is a simple planar 2-link arm shown
in Figure 2, where two joints are revolute pairs
around their z-axes. The masses, lengths and cross-
sections of the first and second links are 25 and 15 kg,
0.8 and 0.6 m, and (0.15, 0.15) and (0.12, 0.12) m, re-
spectively. Gravity is acting in 2Y0 direction. tc
5@530 90#T Nm, vc5@6 6#T rad/s. The dimensions
(lx ,ly ,lz) and the geometric center of one hexahedral
obstacle are (0.4, 0.6, 0.4) and (1.2, 0, 0) m in base co-

ordinates. The manipulator moves from (230°,
230°) to (30°,30°) in joint space. The velocities and
the accelerations at two end points are zero.

As mentioned in Section 4.3, we performed the
global search for the minimum-overload trajectories
by changing the location of the seed point of the ob-
stacle. Our algorithm produced two local minima as
shown in Figure 3, where the motion of link 2 is
shown. When we located the seed point in the right
lower corner of the obstacle, the motion converged al-
ways to the local minimum (A) regardless of the total
motion time. When it was located in the right upper
corner and the total motion time is around 0.65 s, the
motion converged to the local minimum (B). When
ignoring the obstacle, the resultant motion is very
simple [Figure 3(a)]. However, if we lowered tc , the
motion resembles the local minimum (A). The mini-
mum times are 0.69, 0.99 and 1.16 s in Figures 3(a),
3(b) and 3(c), respectively. Figure 4 shows the actua-
tor torques (solid lines) and the equivalent torques
(dotted lines) during a minimum-time motion, where
joint 2 is almost saturated during the entire motion,
and joint 1 is saturated in the latter half.

Figure 2. Planar 2-link manipulator.
Figure 3. Minimum overload trajectories of last link in
example 1.

Figure 4. Actuator torques (solid lines) and equivalent
torques (dotted lines) of minimum-time motions in local
minimum trajectory (B).
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6.2. Example 2 (Spatial 3-Link Manipulator)

The model is a 3-link arm shown in Figure 5, where
all joints are revolute pairs around their z-axes and it
is the configurations of zero-displacements. Base co-
ordinates are the same as the first link coordinates.
The specifications are listed in Table 2, where gravity
is acting in the 2z0 direction and tc is about twice the
static actuator torques necessary to endure gravity in
fully stretched configuration. The dimensions of two
hexahedral obstacles are both (0.4, 0.4, 0.5) m and the
centers are (0.76 20.47 20.25) and (0.76 0.47 0.25) m
in base coordinates. Their orientations are equal to
base coordinates. The seed points of all links are at
their geometric centers, but those of all obstacles are
located in the corners in order to find various local
paths. The manipulator moves from (260°, 30°,
260°) to (60°, 230°, 2120°) in joint space. The ve-
locities and the accelerations at two end points are
zero.

We repeated the global search for the minimum-
overload trajectories, mentioned in Section 4.3, start-
ing from T50.6 s and increasing it by 0.01 s. The re-
sults in Figure 6 show that the minimum overloads
decrease monotonically until they vanish at the mini-
mum times. The convergence was therefore quite
stable. This figure also demonstrates that we can find

the global optimum trajectory by adjusting the seed
points of the obstacles. To show the global search
clearly, we aligned the obstacles exactly in the way of
the initial motion. We have found four local minima
shown in Figure 7 and we can see that the local mini-
mum (C) is the global one whose minimum overload
is the least among the four. The minimum times are
0.728 s when ignoring the obstacles, and 0.807, 0.961,
1.08 and 1.32 s in the local minima (C)–(F), respec-
tively. In the case of no obstacles, not shown in Figure

Figure 5. Spatial 3-link manipulator.

Table II. Specifications of example 2 (SI units).

Links Masses lx , ly , lz (local coordinates) tc vc

First 100 0.2, 0.2, 1.0 1000 6

Second 50 0.8, 0.15, 0.15 1000 6

Third 30 0.12, 0.6, 0.12 200 6

Figure 6. Minimum overloads in example 2.

Figure 7. Local minimum trajectories of last link in ex-
ample 2.
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7, the manipulator turned around z1-axis with link 3
bent downward to reduce the moment of inertia
about that axis and the moment arm of gravity about
z2- and z3-axes.

As the total motion time approaches the mini-
mum time, the minimum overload reduces steeply
and disappears suddenly at the minimum time. It is
a delicate problem to find the exact minimum time
efficiently. Table 3 shows convergence data of the
minimum-time search mentioned in Section 5. From
an initial motion time 0.2 s, only six iterations were
performed. At the end of each iteration, the total mo-
tion time and wo were updated using Eqs. (37) and
(38), respectively. In all local minima, six or seven it-
erations were performed to find the trajectories that
satisfied the convergence criteria (39).

In the optimal motions, the manipulator touches
slightly the surfaces of the obstacles and this may be
considered as imperfect obstacle avoidance. The
minimum clearance to assure safe avoidance must be
added to the actual geometric sizes of obstacles. Fig-
ure 8 shows the saturation of the actuators. In the case
of no obstacle, joint 2 [dotted line in Figure 8(a)] is not

fully saturated. On the other hand, all joints are al-
most saturated in Figure 8(b) to avoid the obstacles by
the local minimum (F).

6.3. Example 3 (Spatial 6-Link Manipulator)

Figure 9 shows a configuration of a PUMA 560 type
manipulator at zero-displacement. All joints are revo-
lute pairs around their z-axes. The base coordinates
are the same as the first link coordinates at zero-
displacement. Link 4 is connected to link 3. The link
parameters in Denavit–Hartenberg notation and the
specifications are listed in Tables 4 and 5, respectively,
where gravity is acting in 2z0 direction and tc is
about twice the static actuator torques necessary to
endure gravity in fully stretched configurations. The
mass of the last link includes that of the tool and is
heavier than link 5. The dimensions of one hexahe-
dral obstacle are (1.2, 2.0, 1.2) m and the center is (1.2,
0.0, 0.0) m in base coordinates. The orientations of the
obstacle are equal to base coordinates. The manipu-

Table III. Convergence data of minimum-time search in
example 2.

Iteration
no.

Total
motion
times

Line
searches

performed

Minimum
overloads

(Jc
0)

Minimum
penalty terms

(Jo
0)

1 0.2000 98 156.6 1.338E-4

2 0.7184 87 3.517E-2 1.078E-9

3 0.7817 90 1.606E-3 1.631E-6

4 0.7974 96 2.064E-4 3.958E-7

5 0.8036 104 3.245E-5 5.334E-8

6 0.8060 73 7.373E-6 2.072E-8

Figure 8. Equivalent torques of minimum-time motions;
thick, dotted and thin lines mean first, second, and third
joints, respectively.

Figure 9. Spatial 6-link manipulator.

Table IV. Link parameters of example 3 (SI units).

Links a i21 ai21 di u i

First 0 0 0 u1

Second 290° 0 0 u2

Third 0 0.8 0 u3

Fourth 290° 0 0.8 u4

Fifth 90° 0 0 u5

Sixth 290° 0 0 u6
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lator moves from (20°, 60°, 2120°, 0°, 230°, 0°) to
(220°, 260°, 260°, 0°, 30°, 0°) in joint space. The
velocities and the accelerations at the start and the
goal positions are all zero.

Similar to Figure 6 in example 2, we repeated the
global search at every time step. The results are
shown in Figure 10. When ignoring the obstacle, the
minimum overload decreases gradually until it van-
ishes at the minimum time 0.900 s. We can see that the
convergence is quite stable and it converged to only
one optimal trajectory regardless of the total motion
time. It is shown in Figure 11, where four frames are
1st, 6th, 11th and 16th ones among totally 16 equal
time-interval frames. We can see in this motion that
the manipulator turns around z1-axis with the last
link bent downward to reduce the moment of inertia
about that axis and the moment arm of gravity about
z2- and z3-axes. We also observe that the manipulator
maximizes the joint coupling effect by the overactions
of the underloaded joints to reduce the torques of the

overloaded joints. Here, joint 1 is underloaded and
joints 2 and 3 are overloaded. (We can also see this in
Figure 16.)

By adjusting the location of seed point of the ob-
stacle, we have found two obstacle-free courses,
namely, the inner and the outer courses as shown in
Figures 12, 13 and 14, 15, respectively, where, each
four frames are 1st, 6th, 11th and 16th ones among to-
tally 16 equal time-interval frames. The convergence
properties in Figure 10 were not as stable as those in
Figure 6. They converged to different local minima,
with the main difference being the bending direction
of joint 3.

In the inner course, the local minimum shown in
Figure 12 has less minimum overload than Figure 13.
We can see this fact in Figure 10, where the dotted
curve seems to be composed of several segments of
two parallel curves. The difference in the minimum
overloads becomes smaller as the total motion time
approaches the minimum time. Both the minimum
times are equally 1.12 s. In the outer course, the local
minimum shown in Figure 14 has less minimum
overload than Figure 15. The difference is quite small
in Figure 10, but it becomes larger as the total motion
time approaches the minimum time. The minimum
times of Figures 14 and 15 are 1.17 s and 1.21 s, re-
spectively. Figure 16 shows the saturation state of the
actuators. Joints 2, 3 and 5 are overloaded in the initial
motions, where maximum equivalent torques are
twice over the actuator limits. After the optimization,
the motion time is increased from 0.8 to 0.900 s in the
case of no obstacle and increased to 1.12 s to avoid the
obstacle. Moreover, all the joints are close to satura-
tion during the minimum-time motions. This is con-
sistent with Pontryagin’s maximum principle, since a

Figure 12. Local minimum trajectory (G) in inner course.

Table V. Specifications of example 3 (SI units).

Links Mass lx , ly , lz (in link coordinates) tc vc

First 100 0.2, 0.2, 1.0 1500 6

Second 50 0.8, 0.15, 0.15 1500 6

Third 30 0.12, 0.6, 0.12 500 6

Fourth 5 0.08, 0.08, 0.2 75 6

Fifth 5 0.08, 0.2, 0.08 75 6

Sixth 10 0.12, 0.2, 0.3 5 6

Figure 10. Minimum overloads in example 3.

Figure 11. Minimum time motion ignoring the obstacle.
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necessary condition for the minimum-time motion
(assuming no singular arcs) is that all the joints be in
saturation during the motions.

7. CONCLUSIONS

In this paper, we present a practical and reliable
method for finding minimum-time motions for ma-
nipulators moving in an obstacle field subject to the
limits of velocity-dependent actuator forces. Arbi-
trary point-to-point manipulator motions are repre-
sented by a point in a finite dimensional vector space
parametrized by quintic B-splines. The novel idea in
this work is the concept of the minimum-overload
trajectory, in which the actuator-overloads achieve
their minimum values with the motion time fixed.
The minimum-time motion is defined rigorously
with this concept and it is obtained by a successive
search for the minimum-overload trajectory.

In the resultant minimum-time motions of planar
2-link, spatial 3-link and 6-link manipulators we have
the following: (1) Consistent with Pontryagin’s maxi-
mum principle, almost all actuators are close to satu-
ration during the motion. (2) The manipulator maxi-
mizes the joint coupling effect by the overactions of
underloaded joints to reduce the torques on the over-
loaded joints. (3) The manipulator turns around the
vertical z1-axis with the last link bent in order to re-
duce the moment of inertia about that axis and
torques due to gravity.

8. APPENDIX

8.1. Reduced Coefficient Matrix

Using (15), (17), (18) in Section 3, the initial and the
final motion conditions, (11)–(13), become

@us vs /b as /b2 u f v f /b a f /b2#

5C@B~0 ! B8~0 ! B9~0 ! B~k ! B8~k ! B9~k !# .

(A1)

Using the nodal values of Table 1 in Section 3:

B~0 !5~ 1
120!@1 26 66 26 1 0 ... 0#T,

(A2)

B8~0 !5~ 1
24!@21 210 0 10 1 0 ... 0#T,

(A3)

B9~0 !5~ 1
6!@1 2 26 2 1 0 ... 0#T,

(A4)

B~k !5~ 1
120!@0 ... 0 1 26 66 26 1#T,

(A5)

Figure 13. Local minimum trajectory (H) in inner course.

Figure 14. Local minimum trajectory (I) in outer course.

Figure 15. Local minimum trajectory (J) in outer course.

Figure 16. Equivalent torques in example 3; solid lines
are minimum-time motions in local inimum (G) and
dotted lines are initial motions when total motion time is
0.8 s.

12 • Journal of Robotic Systems—2005

  PROOF COPY 001501ROB  



  PROOF COPY 001501ROB  

  PRO
O

F CO
PY 001501RO

B  
B8~k !5~ 1

24!@0 ... 0 21 210 0 10 1#T,
(A6)

B9~k !5~ 1
6!@0 ... 0 1 2 26 2 1#T.

(A7)

Substituting (A2)–(A7) for the right side of (A1),

@As Af#5@Cs Cr Cf#F Bc 0

0 0

0 Bc

G , (A8)

where Cs , Cf are the first and the last five columns
(n35) of matrix C, respectively, Cr is the remaining
columns (n3k25), and

As5@us vs /b as /b2# , (A9)

Af5@u f v f /b a f /b2# , (A10)

Bc53
1

120 2 1
6

13
60 2 5

12
1
3

11
20 0 21

13
60

5
12

1
3

1
120

1
24

1
6

4 . (A11)

By matrix partition, (A8) becomes

As5CsBc , (A12)

Af5CfBc . (A13)

Equations (A12) and (A13) are partitioned again as

As5Cs1Bc11Cs2Bc2 , (A14)

Af5Cf1Bc31Cf2Bc4 , (A15)

where Cs1 , Cs2 are the first three and the last two col-
umns of Cs ; Cf1 , Cf2 are the first two and the last
three columns of Cf , respectively; Bc1 , Bc2 are the first
three and the last two rows of Bc ; and Bc3 , Bc4 are the
first two and the last three rows of Bc , respectively.

Since Bc1 , Bc4 are nonsingular, we can rewrite
(A14) and (A15) as

Cs15AsBc1
212Cs2Bc2Bc1

21, (A16)

Cf25AfBc4
212Cf1Bc3Bc4

21. (A17)

By matrix partition, (15) in Section 3 can be written as

u~s !5Cs1Bs1~s !1Cs2Bs2~s !1CrBr~s !1Cf1Bf1~s !

1Cf2Bf2~s !, (A18)

where Bs1(s) (331), Bs2(s) (231), Br(s) (k25
31), Bf1(s) (231) and Bf2(s) (331) are the corre-
sponding row partitions of B(s).

Substituting (A16) and (A17) for (A18) and rear-
ranging yields

u~s !5Fs~s !1CmBm~s !1Ff~s !, (A19)

where

Fs~s !5AsBc1
21Bs1~s !, (A20)

Cm5@Cs2 Cr Cf1# , (A21)

Bm~s !5H Bs2~s !2Bc2Bc1
21Bs1~s !

Br~s !

Bf1~s !2Bc3Bc4
21Bf2~s !

J (A22)

Ff~s !5AfBc4
21Bf2~s !, (A23)

where the boundary condition splines, Fs(s), Ff(s),
whose dimensions are (n31), can be calculated from
the initial and the final motion conditions. Cm is the
reduced coefficient matrix (n3k21) and Bm(s) is the re-
duced B-spline bases functions (k2131).

8.2. Initial Fifth Degree Polynomials

up~s !5as51bs41cs31ds21es1f, (A24)

a5
a f2as

2b2k3 2
3v f13vs

bk4 1
6u f26us

k5 , (A25)

b52
2a f23as

2b2k2 1
7v f18vs

bk3 2
15u f215us

k4 ,

(A26)

c5
a f23as

2b2k
2

4v f16vs

bk2 1
10u f210us

k3 , (A27)
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d5

as

2b2 , (A28)

e5
vs

b
, (A29)

f5us . (A30)
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