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Abstract

We develop a numerically efficient algorithm for computing controls for nonlinear systems
that minimize a quadratic performance measure. We formulate the optimal control problem
in discrete-time, but many continuous-time problems can also be solved after discretization.
Our approach is similar to sequential quadratic programming for finite-dimensional optimiza-
tion problems in that we solve the nonlinear optimal control problem using sequence of linear
quadratic subproblems. Each subproblem is solved efficiently using the Riccati difference equa-
tion. We show that each iteration produces a descent direction for the performance measure
and that the sequence of controls converges to a solution that satisfies the well-known necessary
conditions for the optimal control. We also show that the algorithm is a Gauss-Newton method,
which means it inherits excellent convergence properties. We demonstrate the convergence
properties of the algorithm with two numerical examples.

1 Introduction

For many nonlinear control applications such as robotics, it is becoming increasingly important
to find controls for them that minimize a performance measure [1, 2, 3]. Ideally these controls
could be computed in near real-time with good numerical convergence and stability properties.
However, optimal control problems can be difficult to solve numerically for a variety of reasons.
For instance, discrete-time optimal control problems over a finite time-horizon can be thought of
as finite-dimensional nonlinear programming problems, where the system dynamics may create an
unfavorable eigenvalue structure in the Hessian of the ensuing optimization problem. For these
problems, gradient-based descent methods will be inefficient. On the other hand, even linear
dynamics may lead to difficulties due to the large scale. However, in the case of linear dynamics
with a quadratic performance index, the resulting optimization problem is a Quadratic Program
of special structure that can be exploited to obtain an efficient algorithm for its solution. This
algorithm is the well-known Linear Quadratic optimal control problem. It is reviewed in Section 2.2
for completeness.

In this paper, we focus on the case of finding optimal controls for nonlinear dynamic systems
with general linear quadratic performance indexes (including tracking and regulation). We are
interested primarily in systems for which the derivatives of the dynamic equations with respect to
the state and the control are available, but whose second derivatives with respect to the states and
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the controls are too complex to compute analytically. It should be noted that there are several well-
established optimal control solvers, including collocation methods [10, 13] for continuous systems,
and algorithms for discrete-time systems [21, 20, 18] currently available for handling a broader class
of systems and performance measures than considered in this work, but our goal is to develop an
algorithm that is fast and stable enough to potentially be implemented for real-time applications
and which does not require difficult to obtain information such as 2nd-order system derivatives. As
has been demonstrated in [4], an efficient solution to the optimal control problem can be applied
to the important area of Model Predictive Control [5, 6].

In our algorithm, we linearize the system dynamics about a input/state trajectory, the current
candidate for an optimal solution, and we formulate a novel nonstandard linear quadratic optimal
control subproblem from the solution of the which we obtain a search direction for an improved
control. The latter is found by a line search consisting of minimizing the performance index along
this search direction and implemented by direct simulation of the system dynamics. This process
is repeated, and given the structure of the proposed algorithm, we refer to it in the sequel as the
Sequential Linear Quadratic (SLQ) algorithm. We prove that search directions produced in this
manner are descent directions and that this algorithm converges to a control that locally minimizes
the cost function. The solution of the linear quadratic subproblem can be reliably obtained by
solving a Riccati difference equation; therefore, the proposed algorithm has very desirable numer-
ical properties. Furthermore, we show that the search directions from our algorithm are those of
the Gauss-Newton method when the original optimal control problem is reformulated as an un-
constrained least-squares problem. As such our algorithm can be viewed as a highly efficient and
robust implementation of the Gauss-Newton method to optimal control. Finally, we provide some
analysis and demonstrate with numerical experiments the conditions required for fast convergence.

We believe that our paper makes the connection between the Gauss-Newton method and an
LQR based iterative process explicit for the first time. Other papers previously have considered
LQR based algorithms and used the so-called Gauss-Newton approximation by dropping from the
Hessian of the Lagrangian the contribution of the system dynamics to construct the cost function
[7, 8, 9]. But these algorithms do not result in the Gauss-Newton direction at each step, and
therefore differ from our algorithm.

Algorithms similar in spirit are reported in [16, 17, 18, 19]. Such algorithms implement a Newton
search, or asymptotically Newton search, but require that 2nd-order system derivatives be available.
Newton algorithms can achieve quadratic local convergence under favorable circumstances such as
the existence of continuous 3rd-order derivatives [14] or Lipschitz continuity of 2nd-order derivatives,
but cannot guarantee global convergence (that is convergence from any starting point to a local
minimum) unless properly modified. Many systems are too complex for 2nd-order derivatives to be
available or even do not satisfy such strong continuity assumptions (e.g. see Section 4 for examples.)
In such cases, Newton’s method cannot be applied, or the quadratic convergence rate of Newton’s
method does not materialize. This is demonstrated in Example 1 of Section 4, where our approach
is shown to be faster than Newton’s method. Thus our SLQ algorithm provides an alternative to
these algorithms for a reliable and fast solution of difficult optimal control problems while relying
only on first derivative information.

In Section 2, we give the precise formulation of the optimal control problem considered in
the paper, and a brief but complete review of a general Linear Quadratic Tracking/Regulator
problem used repeatedly to obtain search directions in our algorithm. Section 3 presents the
proposed algorithm, establishes its descent and convergence properties, and reveals the Gauss-
Newton connection discussed above. In Section 4, we discuss two numerical examples: a vehicle
moving through nonlinear viscous drag and a gas actuated hopping machine. The first example,
although simple to understand, can be made arbitrarily hard by choosing the drag coefficient
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parameter and as such provides an excellent test bed to demonstrate and compare the efficiency and
robustness of our algorithm to standard algorithms such Steepest Descent and Newton’s method.
The second example serves to show the potential of the proposed algorithm in solving more practical
control problems. Section 5 concludes the paper.

2 Problem Formulation and Background Results

We consider the following general formulation of discrete-time optimal control problems.

Minimize
u(n), x(n)

J = ψ(x(N)) +
N−1∑

n=0

L(x(n), u(n), n) (1)

subject to x(n + 1) = f(x(n), u(n)); x(0) = x0, (2)

where for fixed time n, x(n) and u(n) are m-dimensional and p-dimensional vectors respectively.
In the formulation above we assume a quadratic performance index, namely:

L(x(n), u(n), n) =
1
2

(
[x(n)− xo(n)]T Q(n)[x(n)− xo(n)] +

[u(n)− uo(n)]T R(n)[u(n)− uo(n)]
)

(3)

and
ψ(x) =

1
2
[x− xo(N)]T Q(N)[x− xo(N)] (4)

In (3) and (4), uo(n), n = 0, . . . N − 1, and xo(n), n = 1, . . . N are given control input and state
target sequences. In standard optimal regulator control problem formulations, uo(n), xo(n) are
usually taken to be zero with the exception perhaps of xo(N), the desired final value for the state.
The formulation considered here addresses the more general optimal tracking control problem and
is required for the linear quadratic step in the proposed algorithm presented in Section 3.1. Since
x(0) is given, we assume that Q(0) = 0. We also assume that the weighting matrices in (3) satisfy

R(n) = R(n)T > 0, n = 0, . . . , N − 1, and Q(n) = Q(n)T ≥ 0, n = 1, . . . , N,

to guarantee the strict convexity of the cost function with respect to the controls under linearized
system dynamics.

2.1 First Order Optimality Conditions

We next briefly review the first order optimality conditions for the optimal control problem of (1)
and (2), in a manner that brings out certain important interpretations of the adjoint dynamical
equations encountered in a control theoretic approach and Lagrange Multipliers found in a pure
optimization theory approach.

Let us consider the cost-to-go:

J(n) ≡
N−1∑

k=n

L(x(k), u(k), k) + ψ(x(N)) (5)
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with L and ψ as defined in (3) and (4) respectively. We remark that J(n) is a function of x(n), and
u(k), k = n, . . . , N − 1 and introduce the sensitivity of the cost to go with respect to the current
state:

λT (n) =
∂J(n)
∂x(n)

(6)

From
J(n) = L(x(n), u(n), n) + J(n + 1), (7)

and since
∂J(n+1)

∂x(n) = ∂J(n+1)
∂x(n+1) · ∂x(n+1)

∂x(n) = λT (n + 1)fx(x(n), u(n)), (3) results in the recursion:

λT (n) = Lx(x(n), u(n), n) + λT (n + 1)fx(x(n), u(n))
= [x(n)− xo(n)]T Q(n) + λT (n + 1)fx(x(n), u(n)), (8)

where Lx and fx denote the partials of L and f respectively with respect to the state variables.
The previous recursion can be solved backward in time (n = N − 1, . . . , 0) given the control and
state trajectories and it can be started with the final value:

λT (N) =
∂L(N)
∂x(N)

= [x(N)− xo(N)]T Q(N) (9)

derived from (4). In a similar manner, we compute the sensitivity of J(n) with respect to the
current control u(n):

∂J(n)
∂u(n)

= Lu(x(n), u(n), n) + λT (n + 1)fu(x(n), u(n))

= [u(n)− uo(n)]T R(n) + λT (n + 1)fu(x(n), u(n)), (10)

where in (10), Lu and fu denote the partials of L and f respectively with respect to the control
variables.

Next note that ∂J
∂u(n) = ∂J(n)

∂u(n) since the first n terms in J do not depend on u(n). We have then
obtained the gradient of the cost with respect to the control variables, namely:

∇UJ =
[
∂J(0)
∂u(0)

∂J(1)
∂u(1)

. . .
∂J(N − 1)
∂u(N − 1)

]
. (11)

Assuming u is unconstrained, the first order optimality conditions require that

∇UJ = 0. (12)

We remark that by considering the Hamiltonian

H(x, u, λ, n) ≡ L(x, u, n) + λT f(x, u), (13)

we have that Hu(x(n), u(n), λ(n+1), n) ≡ ∂J
∂u(n) , i.e. we uncover the generally known but frequently

overlooked fact that the partial of the Hamiltonian with respect to the control variables u is the
gradient of the cost function with respect to u. We emphasize here that in our approach for solving
the optimal control problem, we take the viewpoint of the control variables u(n) being the indepen-
dent variables of the problem since the dynamical equations express (recursively) the state variables
in terms of the controls and thus can be eliminated from the cost function. Thus in taking the
partials of J with respect to u, J is considered as a function u(n), n = 0, . . . , N −1 alone, assuming
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that x(0) is given. With this perspective, the problem becomes one of unconstrained minimization,
and having computed ∇UJ , Steepest Descent, Quasi-Newton, and other first derivative methods
can be brought to bear to solve it. However, due to the large-scale character of the problem, only
methods that take advantage of the special structure of the problem become viable. The Linear
Quadratic optimal control algorithm is such an approach in case of linear dynamics. We briefly
review it next.

2.2 Linear Quadratic Tracking Problem

We next consider the case of linear dynamics in the optimal control problem of (1) and (2). In
the following, we distinguish all variables corresponding to the linear optimal control problem from
those of the nonlinear optimal control problem by using an over-bar. When the cost is quadratic as
in (3) we have the well-known Linear Quadratic Tracking problem. The control theoretic approach
to this problem is based on solving the first order necessary optimality conditions (also sufficient in
this case) in an efficient manner by introducing the Riccati equation. We briefly elaborate on this
derivation next, for completeness and also since most references assume that the target sequences
xo(n) and uo(n) are zero. First, we summarize the first order necessary optimality conditions for
this problem.

x̄(n + 1) = A(n)x̄(n) + B(n)ū(n) (14)
λ̄T (n) = [x̄(n)− x̄o(n)]T Q(n) + λ̄T (n + 1)A(n) (15)

∂J̄(n)/∂ū(n) = [ū(n)− ūo(n)]T R(n) + λ̄T (n + 1)B(n) = 0 (16)

Note that the system dynamical equations (14) run forward in time n = 0, . . . , N − 1 with initial
conditions x̄(0) = x̄0 (given), while the adjoint dynamical equations (15) run backward in time,
n = N − 1, . . . , 0 with final conditions λ̄T (N) = [x̄(N)− x̄o(N)]T Q(N). From (16), we obtain

ū(n) = ūo(n)−R−1(n)BT (n)λ̄(n + 1) (17)

and by substituting in (14) and (15), we obtain the classical two-point boundary system but with
additional forcing terms due to the x̄o(n) and ūo(n) sequences:

x̄(n + 1) = A(n)x̄(n)−B(n)R−1(n)BT (n)λ̄(n + 1) + B(n)ūo(n) (18)
λ̄T (n) = Q(n)x̄(n) + AT (n)λ̄(n + 1)−Q(n)x̄o(n) (19)

The system of (18) and (19) can be solved by the sweep method [11], based on the postulated
relation

λ̄(n) = P (n)x̄(n) + s(n) (20)

where P (n) and s(n) are appropriate matrices that can be found as follows. For n = N , (20) holds
with

P (N) = Q(N), s(N) = −Q(N)x̄o(N). (21)

We now substitute (20) in (18) and after some algebra we obtain

x̄(n + 1) = M(n)A(n)x̄(n) + v(n) (22)

where we defined

M(n) =
[
I + B(n)R−1(n)BT (n)P (n + 1)

]−1
(23)

v(n) = M(n)B(n)[ūo(n)−R−1(n)BT (n)s(n + 1)] (24)
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By replacing λ̄(n) and λ̄(n + 1) in (19) in terms of x̄(n) and x̄(n + 1) from (20), we obtain

P (n)x̄(n) + s(n) = Q(n)x̄(n) + AT (n) [P (n + 1)x̄(n + 1) + s(n + 1)]−Q(n)x̄o(n),

and by expressing x̄(n + 1) from (22) and (24) above, we get

P (n)x̄(n) + s(n) = Q(n)x̄(n) + AT (n)P (n + 1)M(n)A(n)x̄(n)
−AT (n)P (n + 1)M(n)B(n)R−1(n)BT (n)s(n + 1)
+AT (n)P (n + 1)M(n)B(n)ūo(n) + AT (n)s(n + 1)−Q(n)x̄o(n)

The above equation is satisfied by taking

P (n) = Q(n) + AT (n)P (n + 1)M(n)A(n) (25)
s(n) = AT (n)[I − P (n + 1)M(n)B(n)R(n)−1B(n)T ]s(n + 1)

+AT (n)P (n + 1)M(n)B(n)ūo(n)−Q(n)x̄o(n) (26)

Equation (25) is the well-known Riccati difference equation and together with the auxiliary equa-
tion (26), which is unnecessary if x̄o(n) and ūo(n) are zero, are solved backward in time (n =
N − 1, . . . , 1), with final values given by (21) and together with (23) and (24). The resulting
values P (n) and s(n) are stored and used to solve forward in time (n = 0, . . . , N −1), (22) and (17)
for the optimal control and state trajectories. These equations are summarized in Algorithm 1.

Algorithm 1 Discrete-Time Finite-Horizon Linear Quadratic Optimal Control Problem

Step 1: Solve backward (n = N − 1, . . . , 0) with PN ≡ QN and sN ≡ −QN x̄o
N :

M(n) =
[
I + B(n)R−1(n)BT (n)P (n + 1)

]−1

P (n) = Q(n) + AT (n)P (n + 1)M(n)A(n)
s(n) = AT (n)

[
I − P (n + 1)M(n)B(n)R−1(n)BT (n)

]
s(n + 1)

+AT (n)P (n + 1)M(n)B(n)ūo(n)−Q(n)x̄o(n)

Step 2: Solve forward (n = 0, . . . , N − 1) with x̄(0) = x̄0:

v(n) = M(n)B(n)[ūo(n)−R−1(n)BT (n)s(n + 1)]
x̄(n + 1) = M(n)A(n)x̄(n) + v(n)
λ̄(n + 1) = P (n + 1)x̄(n + 1) + s(n + 1)

ū(n) = ūo(n)−R−1(n)BT (n)λ̄(n + 1)

3 Main Results

3.1 Formulation of the SLQ Algorithm

In the proposed SLQ algorithm, the control at stage k+1 is found by performing a one-dimensional
search from the control at stage k and along a search direction that is found by solving a Linear
Quadratic (LQ) optimal control problem. Specifically, let Uk = [uT (0) uT (1) . . . uT (N −1)]T be the
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optimal solution candidate at step k, and Xk = [xT (1) xT (2) . . . xT (N)]T the corresponding state
trajectory obtained by solving the dynamical equations (2) using Uk and with the initial conditions
x(0). We next linearize the state equations (2) about the nominal trajectory of Uk and Xk. The
linearized equations are

x̄(n + 1) = fx(x(n), u(n)) x̄(n) + fu(x(n), u(n)) ū(n) (27)

with initial conditions x̄(0) = 0. We then minimize the cost index (1) with respect to ū(n). The
solution of this LQ problem gives Ūk = [ūT (0) ūT (1) . . . ūT (N−1)]T , the proposed search direction.
Thus, the control variables at stage k + 1 of the algorithm are obtained from

Uk+1 = Uk + αk · Ūk (28)

where αk ∈ R+ is appropriate stepsize, the selection of which is discussed later in the paper.
Note again our perspective of considering the optimal control problem as an unconstrained finite-
dimensional optimization problem in U . We emphasize that Ūk as computed above is not the
steepest descent direction. It is the solution to a linear quadratic tracking problem for a nonlinear
system that has been linearized about Uk. Note that the objective function is not linearized for this
solution.

3.2 Properties of the SLQ Algorithm

In this section, we prove two important properties of the proposed algorithm. First, we show that
search direction Ūk in (28) is a descent direction.

Theorem 1 Consider the discrete-time nonlinear optimal control problem of (1) and (2), and
assume a quadratic cost function as in (3) and (4) with R(n) = RT (n) > 0, Q(n) = QT (n) ≥ 0,
n = 0, 1, . . . , N − 1, and Q(0) = 0, Q(N) = QT (N) ≥ 0. Also consider a control sequence
U ≡ [uT (0) . . . uT (N − 1)]T and the corresponding state trajectory X ≡ [xT (1) . . . xT (N)]T . Next,
linearize system (2) about U and X and solve the following linear quadratic problem:

Minimize
ū(n), x̄(n)

J̄ =
1
2
[x̄(N)− x̄o(N)]T Q(N)[x̄(N)− x̄o(N)]

+
1
2

N−1∑

n=0

{
[x̄(n)− x̄o(n)]T Q(n)[x̄(n)− x̄o(n)]

+ [ū(n)− ūo(n)]T R(n)[ū(n)− ūo(n)]
}

(29)

subj. to x̄(n + 1) = fx(x(n), u(n))x̄(n) + fu(x(n), u(n))ū(n); x̄(0) = 0, (30)

where x̄o(n) ≡ xo(n)−x(n), ūo(n) ≡ uo(n)−u(n). Then if Ū ≡ [ūT (0) . . . ūT (N − 1)]T is not zero,
it is a descent direction for the cost function (1), i.e. J(U + α · Ū) < J(U) for some α > 0.

Proof: We establish that Ū is a descent direction by showing that:

∇UJ · Ū =
N−1∑

n=0

∂J(n)
∂u(n)

ū(n) < 0, (31)

since ∇UJ in (11) is the gradient of the cost function with respect to the control variables. Now,
the components of ∇UJ are expressed in (10) in terms of the adjoint variables λ(n) that satisfy
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recursion (8) with final values given by (9). On the other hand, x̄(n) and ū(n) together with adjoint
variables λ̄(n) satisfy the first order optimality conditions for the linear quadratic problem given
in (14), (15) and (16), where A(n) = fx(x(n), u(n)) and B(n) = fu(x(n), u(n)). Let us define

λ̃(n) = λ̄(n)− λ(n) (32)

and note from (8) and (15) that

λ̃T (n) = x̄T (n)Q(n) + λ̃T (n + 1)A(n); λ̃(N) = Q(N)x̄(N). (33)

Next through the indicated algebra, we can establish the following relation:

∂J(n)
∂u(n)

· ū(n) =
(
[u(n)− uo(n)]T R(n) + λT (n + 1)B(n)

)
ū(n)

(using (10))
= −λ̃T (n + 1)B(n)ū(n)− ūT (n)R(n)ū(n)

(using (16))
= −λ̃T (n + 1)x̄(n + 1) + λ̃T (n + 1)A(n)x̄(n)− ūT (n)R(n)ū(n)

(using (30))
= −λ̃T (n + 1)x̄(n + 1) + λ̃T (n)x̄(n)− x̄T (n)Q(n)x̄(n)− ūT (n)R(n)ū(n).

(using (33))

Finally, summing up the above equation from n = 0 to n = N − 1, and noting that x̄(0) = 0 and
from (21) that λ̄(N) = Q(N)x̄(N), gives:

∇UJ · Ū =
N−1∑

n=0

∂J(n)
∂u(n)

· ū(n)

= −
N−1∑

n=0

[x̄T (n)Q(n)x̄(n) + ūT (n)R(n)ū(n)]− x̄T (N)Q(N)x̄(N) < 0 (34)

and the proof of the theorem is complete.

We remark that the search direction Ū can be found by Algorithm 1 with A(n) = fx(x(n), u(n))
and B(n) = fu(x(n), u(n)).

The next result shows that the proposed SLQ algorithm does in fact converge to a control that
is a stationary point of the cost function (1) subject to the system constraints (2). In the following,
we denote by J [U ] the cost associated with the control U = [uT (0) . . . uT (N − 1)]T (and the given
initial conditions x(0).)

Theorem 2 Starting with an arbitrary control sequence U0, compute recursively new controls from
(28) where the direction Ūk is obtained as in Theorem 1 by solving the LQ problem of (29) and the
linearized system (30) about the current solution candidate Uk and corresponding state trajectory
Xk; also αk is obtained by minimizing J [Uk + αŪk] over α > 0. Then every limit point of Uk gives
a control that satisfies the first order optimality conditions for the cost function (1) subject to the
system equations (2).

Proof: Let us define Dk ≡ ∇UJ [Uk] · Ūk < 0, the derivative of J [Uk + αŪk] with respect to
α at α = 0. Through rather standard arguments (see Appendix A), it can be shown that Dk has a
subsequence that converges to zero as k →∞.
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From (34), we obtain:
Dk = ∇UJ [Uk] · Ūk ≤ −ρ‖Ūk‖2 ≤ 0, (35)

where ρ > 0 is a uniform lower bound on the minimum eigenvalue of R(n), n = 0, . . . , N − 1.
Then (35) implies that there is a corresponding subsequence of Ūk that converges to zero. For
notational convenience, we identify this subsequence of Ūk (and corresponding subsequences of
other sequences) with the whole sequence.

But Ūk → 0 implies from (14) that X̄k → 0 (note that x̄(0) = 0 and that A(n) and B(n) can
be assumed to be uniformly bounded since Uk+1 − Uk = αkŪk → 0.) Consequently, (33) implies
that λ̄(n) → λ(n) for n = 0, . . . , N − 1, and that the right-hand-side of (10) converges to the
right-hand-side of (16) which is zero by the optimality of Ūk for the LQ problem. This shows
that the first order optimality conditions (10) for the nonlinear control problem are asymptoti-
cally satisfied, i.e. ∇UJ [Uk] → 0 as k → ∞. We remark that the last conclusion follows for a
subsequence of Uk, but since the cost J [Uk] is monotonically decreasing and clearly converges to a
locally minimum value, any limit point of Uk must be a stationary point and the proof is complete.

We remark, that the exact line search in Theorem 2 can be replaced with an inaccurate line
search that satisfies some standard conditions such as in the Armijo, Goldstein, or Wolfe stepsize
selection rules [14]. Similar arguments as in Appendix A, can be used to show that Dk → 0 still
follows and the proof is completed as above.

The proposed SLQ procedure is summarized as Algorithm 2.

3.3 Connections with Gauss-Newton Method

The Gauss-Newton method [15, 12] applies to least-squares optimization problems of the form:

Minimize
U

JGN [U ] ≡
M∑

l=1

φ2
l (U), (36)

where φl(U), l = 1, . . . M are real-valued functions of the independent variables U . Let GF (U)
denote the Jacobian of F (U) ≡ [φ1 . . . φM ]T with respect to U . Then, we can readily compute the
gradient and Hessian of the objective function in (36) as (see, for example [12])

∇UJGN [U ] = F T (U) ·GF (U) (37)

and

∇2
UJGN [U ] = GT

F (U) ·GF (U) +
M∑

l=1

φl(U) · ∇2
Uφl(U). (38)

respectively. While Newton’s method uses the update

Uk+1 = Uk −
(∇2

UJGN [Uk]
)−1∇UJGN [Uk], (39)

the Gauss-Newton method updates the solution estimate from

Uk+1 = Uk − αk

(
GT

F (Uk)GF (Uk)
)−1∇UJGN [Uk], (40)

where ak is an appropriate stepsize. It can be observed from (39) and (40) that the Gauss-Newton
direction is an approximation to the Newton direction obtained by omitting the second order
derivative terms in the Hessian (38). Newton’s method does not involve a line search and when it
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Algorithm 2 Sequential Linear Quadratic Procedure

Step 0: Set k = 0, and let Uk = [uT (0) . . . uT (N − 1)]T be an arbitrary control
sequence.

Step 1: Compute the state trajectory Xk = [xT (1) . . . xT (N)]T corresponding to
Uk and initial conditions x(0) = x0 by recursively solving the nonlinear
dynamical equations

x(n + 1) = f(x(n), u(n)).

Step 2: For n = 0, 1 . . . N − 1, let

A(n) = fx(x(n), u(n)) B(n) = fu(x(n), u(n)),
x̄o(n) = xo(n)− x(n) ūo(n) = uo(n)− u(n)

where xo(n) and uo(n) are given target control and state trajectories, and
solve the following LQ problem, using Algorithm 1.

Minimize
ū(n), x̄(n)

J̄ =
1
2
[x̄(N)− x̄o(N)]T Q(N)[x̄(N)− x̄o(N)]

+
1
2

N−1∑

n=0

{
[x̄(n)− x̄o(n)]T Q(n)[x̄(n)− x̄o(n)]

+ [ū(n)− ūo(n)]T R(n)[ū(n)− ūo(n)]
}

subj. to x̄(n + 1) = A(n)x̄(n) + B(n)ū(n); x̄(0) = 0,

Let Ūk = [ūT (0) . . . ūT (N − 1)]T . If ‖Ūk‖ < tol · ‖Uk‖, EXIT with U∗ = Uk

being a control that satisfies the first order optimality conditions. Otherwise,
continue with Step 3.

Step 3: Starting with αk = 1 find α∗k ∈ (0 1] such that the control U = Uk + α∗kŪk

and corresponding state trajectory X obtained by simulating the system
dynamical equations as in Step 1, minimizes the cost function

J =
1
2
[x(N)− xo(N)]T Q(N)[x(N)− xo(N)] +

1
2

N−1∑

n=0

{
[x(n)− xo(n)]T Q(n)[x(n)− xo(n)] +

[u(n)− uo(n)]T R(n)[u(n)− uo(n)]
}

.

Alternatively the Armijo or some other stepsize selection rule may be used.
Set k → k + 1 and continue with Step 1.
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converges, under certain favorable conditions such as continuity of 3rd-order derivatives or Lipschitz
continuity of 2nd-order derivatives, it does so quadratically. On the other hand, the Gauss-Newton
direction is a descent direction, because the approximation of the Hessian used is positive semidef-
inite by construction; therefore, it is recommended that the Gauss–Newton method should be used
along with a line search (or a trust region approach not discussed here) to guarantee global con-
vergence. The Gauss-Newton method can ultimately achieve a quadratic rate of convergence, in
spite of the fact that second order derivative information is not used. This is the case in problems
with a low degree of nonlinearity or in small residual problems, i.e. with ||∇2

Uφl(U∗)‖ or |φl(U∗)|,
l = 1, . . . M being small at the optimal solution U∗ respectively, in which case the omitted terms
from the Hessian (38) will be also small. However, empirical evidence shows that the method usu-
ally performs well in general and it can be shown that the rate of convergence is no worse than
linear [15].

We next cast the optimal control problem of (1) and (2) with quadratic cost given by (3) and
(4) in the least squares minimization form of (36). Consider the eigenvalue decompositions

Q(n) =
m∑

i=1

qi(n)vi(n)vT
i (n) (41)

and

R(n) =
p∑

j=1

rj(n)wj(n)wT
j (n) (42)

where qi(n) ≥ 0, i = 1, . . . ,m and rj(n) > 0, j = 1, . . . , p are the eigenvalues of Q(n) and R(n)
respectively and vi(n) ∈ Rm, wj(n) ∈ Rp are corresponding sets of orthonormal eigenvectors. We
remind the reader that m and p denote the dimensions of the state and control vectors respectively.
We also bring in functions gn(U), n = 1, . . . , N that express the states x(n) in terms of the input
sequence U = [uT (0) uT (1) . . . uT (N − 1)]T , that is

x(n) ≡ gn(U). (43)

Clearly, g1(U) ≡ f(x0, u(0)), g2(U) ≡ f(g1(U), u(1)), etc. can be evaluated recursively by simulat-
ing the dynamical equations (2). Now, it can be readily seen that the cost function of the optimal
control problem takes the form of (36) by defining the functions

φQ
ni(U) ≡ q

1/2
i (n + 1)vT

i (n + 1)[gn+1(U)− xo(n + 1)], n = 0, . . . , N − 1, i = 1, . . . ,m (44)

and
φR

nj(U) ≡ r
1/2
j (n)wT

j (n)[u(n)− uo(n)], n = 0, . . . , N − 1, j = 1, . . . , p. (45)

Specifically, we have that the cost in (1) and (3) can be expressed as

J ≡
N−1∑

n=0




m∑

i=1

[φQ
ni(U)]2 +

p∑

j=1

[φR
nj(U)]2


 . (46)

Next, we apply (37) and (38) to compute ∇UJ and ∇2
UJ . Let us first define

Q1/2(n) ≡




q
1/2
1 (n) . . . 0

...
. . .

...
0 . . . q

1/2
m (n)







vT
1 (n)
...

vT
m(n)


 , (47)
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and

R1/2(n) ≡




r
1/2
1 (n) . . . 0

...
. . .

...
0 . . . r

1/2
p (n)







wT
1 (n)
...

wT
p (n)


 . (48)

Also let E(n) ≡ [0p×(n−1)p Ip 0p×(N−n)p]T where 0i×j is the zero i× j matrix and Ip is the identity
matrix of size p. Then straightforward algebra gives

F (U) =




Q1/2(1)[g1(U)− xo(1)]
...

Q1/2(N)[gN (U)− xo(N)]

R1/2(0)[u(0)− uo(0)]
...

R1/2(N − 1)[u(N − 1)− uo(N − 1)]




(49)

and

GF (U) =




Q1/2(1)∇Ug1
...

Q1/2(N)∇UgN

R1/2(0)ET (1)
...

R1/2(N − 1)ET (N)




. (50)

Furthermore, substituting (50) and (49) in (37) results in the following formula:

∇UJ =
N−1∑

n=0

{
[gn+1(U)− xo(n + 1)]T Q(n + 1)[∇Ugn+1]T + [u(n)− uo(n)]T R(n)ET (n + 1)

}
.

(51)
Similarly, from (50) and (38), we obtain

∇2
UJ =

N∑

n=1

[∇Ugn]T Q(n)[∇Ugn] + RD +
N∑

n=1

m∑

i=1

φQ
ni · ∇2

UφQ
ni, (52)

where we defined RD ≡ diag{R(0), . . . , R(N −1)}. In (38), note that ∇2
UφR

nj = 0 since φR
nj is linear

in U .
Now, we are in position to prove the following result

Theorem 3 The proposed SLQ algorithm for solving the nonlinear optimal control problem of (1)
and (2) with quadratic performance as in (3) and (4) is equivalent to the Gauss-Newton method
(40) applied to the objective function in (46).

Proof: We notice that the LQ problem formulated in Theorem 1 and the solution of which
provides the SLQ search direction Ū can be also expressed as in (46). We can then obtain the
gradient and Hessian for this problem from (51) and (52) respectively when the appropriate variables

12



are used. Specifically, using the bar notation to distinguish the variables that are different in the
LQ and original nonlinear optimal control problem, we have

∇Ū J̄ [Ū ] =
N−1∑

n=0

{
[ḡn+1(Ū)− x̄o(n + 1)]T Q(n + 1)[∇Ū ḡn+1]T + [ū(n)− ūo(n)]T R(n)ET (n + 1)

}

(53)
and

∇2
Ū J̄ [Ū ] =

N∑

n=1

[∇Ū ḡn]T Q(n)[∇Ū ḡn] + RD +
N∑

n=1

m∑

i=1

φ̄Q
ni · ∇2

Ū φ̄Q
ni. (54)

Next, notice that x̄(n) = ḡn(Ū) and, therefore (see (44)), φ̄Q
ni(Ū) are linear in Ū . This implies

that the last term in (54) vanishes; we also have that the LQ problem in the form of (46) becomes
a QP (quadratic program). Thus the LQ solution is expressed as

Ū = − (∇2
Ū J̄ [0]

)−1∇Ū J̄ [0], (55)

which represents a Newton update step from the zero starting point. Now observe that x̄(n) =
ḡn(0) ≡ 0, the result of simulating the linearized dynamical equations (27) with zero input and
initial conditions. Also, we have previously defined (see statement of Theorem 1)

x̄o(n) ≡ xo(n)− x(n) = xo(n)− gn(U) and ūo(n) ≡ uo(n)− u(n). (56)

Finally, we claim that
∇Ū ḡn(0) = ∇Ugn(U), (57)

where U is the solution estimate for the nonlinear control problem at the kth stage. Indeed, from
(2), it follows that

∇Ugn+1(U) = fx(x(n), u(n))∇Ugn(U) + fu(x(n), u(n))ET (n + 1), ∇Ug0 ≡ 0. (58)

Also, from (27), we have

∇Ū ḡn+1(0) = fx(x(n), u(n))∇Ū ḡn(0) + fu(x(n), u(n))ET (n + 1), ∇Ū ḡ0 ≡ 0. (59)

Clearly from (58) and (59), we have the desired result.
We now apply the above observations and in particular (56 and (57) in the expressions (53)

and (54) for the gradient and Hessian of the LQ problem, and further by substituting in (55), we
obtain for the SLQ direction at the kth stage:

Ū = −
[

N∑

n=1

[∇Ugn(U)]T Q(n)[∇Ugn(U)] + RD

]−1

(
N∑

n=1

[gn(U)− xo(n)]T Q(n)[∇Ugn(U)]T +
N−1∑

n=0

[u(n)− uo(n)]T R(n)ET (n + 1)

)
.(60)

Then comparing (60) with (40) where (51) and (52) (with the 2nd derivatives in (52) dropped) are
used, shows that the SLQ and the Gauss-Newton search direction are the same.

Note that (60) is not recommended for computation of the search direction. The previous anal-
ysis serves the purpose of shedding light to the properties of the SLQ algorithm, and in particular
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for explaining its excellent convergence properties. It also shows that the SLQ algorithm is in fact
a Sequential Quadratic Programming (SQP) approach for the nonlinear optimal control problem
with quadratic cost. Indeed, at each iteration an LQ problem is solved that has been shown to be
equivalent with a QP. Some of the most general approaches for numerically solving optimal control
problems start with discretizing the system equations by the method of collocation and reducing it
to a standard (albeit large scale) finite dimensional optimization program. The method of choice
for solving the latter program is SQP and much of the current research has to do with how to
take advantage of the sparsity in the constraint equations induced by the state equations [10]. Our
algorithm exactly accomplishes this by solving the ensuing QP as an LQ problem using the results
summarized in Algorithm 1 and which take full advantage of the problem structure.

The results of this section also suggest possible optimal control problem structures for which
the SLQ algorithm should enjoy fast (Newton-like) local convergence. Namely, problems with
a small degree of nonlinearity or small residual problems. The latter condition is obtained, for
example in set-point regulator problems, when Q(n) in (3) are zero or relatively small with respect
to R(n) and Q(N) in (4) and the x(N) ≈ xo(N). However, in practice we observed that larger
values of Q(n) give overall better performance, most likely because the states remain smaller and
larger steps can be taken initially. Another favorable situation is when the control penalty R(n)
is high and overpowers the dropped 2nd-order system derivatives in (52). However, we emphasize
that the previous conditions pertain only to the local convergence of the algorithm and that we
have observed excellent overall behavior for a variety of problems in which such conditions may be
satisfied or not.

4 Numerical Examples

4.1 A Vehicle Moving Through Nonlinear Viscous Drag

We consider the following continuous-time minimum fuel problem for a particle moving under
nonlinear viscous friction.

Minimize
u(t), x(t)

J = qfin(x(T )− 10)2 +
∫ T

0

[
q (x(t)2 + ẋ(t)2) + r u2(t)

]
dt (61)

subject to mẍ = u(t)− βsign(ẋ)ẋ2; x(0) = 0 (62)

with u, x scalar variables. More specifically, we would like to drive the state x(t) (position) from 0
to 10 within T = 1sec. We apply our algorithm to this problem, by first discretizing the system.
We select a sampling period of Ts = 1/N with N = 500 and we take m = 25.9gr. Using a simple
Euler integration approach we obtain the discrete-time system:

x(n + 1) = v(n)Ts + x(n) (63)

v(n + 1) = − 1
m

[
βTsv(n)2sign(v(n))− Tsu(n)

]
+ v(n) (64)

where x(n), v(n) approximate the particle position and velocity respectively at time nTs. The cost
function (61) is also discretized as follows:

J = qfin(x(N)− 10)2 + Ts

N−1∑

n=0

[
q (x(n)2 + v(n)2) + r u2(n)

]
. (65)

This problem has a solution that it is easy to understand but it can provide a serious challenge
to any optimization algorithm by taking the drag coefficient parameter β large enough, inducing
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Figure 1: Optimal state, control for a particle moving under viscous drag.

sharper changes in the control at the beginning and end of the motion. While physical reasoning and
boundary layers can be used to circumvent the numerical difficulties, it is desirable for an algorithm
to be able to handle such issues automatically. A representative optimal solution is obtained for
values of the weights r = 10, q = 1, qfin = 106, and for β = 0.1 is depicted in Fig. 1. The proposed
algorithm took 21 iterations to achieve an accuracy of 10−6 (norm of gradient at optimal solution.)
In Table 1, we compare the number of iterations required by our SLQ algorithm and a modified
Newton’s Method (using a standard LU factorization approach when necessary to obtain a descent
direction [12]) to solve this problem with the previous weight values and the indicated values of β.
It is perhaps surprising that Newton’s method requires significantly more iterations that are also
more expensive to implement. We observed that the Newton direction is overall inferior to the SLQ
(Gauss-Newton) direction, in the sense that the line search procedure (implemented by a quadratic
fit algorithm) results in smaller steps with the Newton direction than the SLQ direction in all but
the very few last steps of each algorithm. The relative cost reduction, i.e. cost at iteration k minus
optimal cost normalized by the optimal cost is depicted for both methods and for β = 0.1 in Fig. 2,
where the cost for the Steepest Descent method with exact line search is also shown.
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Figure 2: Relative Cost for SLQ, Modified Newton and Steepest Descent Methods for Example 1.
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β SQL Algorithm Modified Newton’s
Method

0.01 9 72

0.05 20 123

0.1 21 90

0.5 35
did not converge
within 300 itera-
tions

1
did not converge
within 300 itera-
tions

did not converge
within 300 itera-
tions

Table 1: Iterations required by SLQ Algorithm and a Modified Newton’s Method on Example 1.

4.2 A Gas Actuated Hopping Machine

An interesting optimal control problem is that of creating motions for an autonomous hopping
machine. A simple model for a gas actuated one-dimensional hopping system is shown on the
left-hand side of Figure 3. This system is driven by a pneumatic actuator, with the location of the
piston relative to the mass under no external loading defined as yp. After contact occurs with the
ground with y ≤ yp, the upward force on the mass from actuator can be approximated by a linear
spring with F = k(yp − y), where k is the spring constant. The position yp can be viewed as the
unstretched spring length and it can be easily changed by pumping air into or out of either side
of the cylinder. The equations of motion for the mass are mÿ = F (y, yp) −mg, where mg is the

force due to gravity, and F (y, yp) =
{

0 y > yp

k(yp − y) otherwise.
Note that in this case F (y, yp) is not

differentiable at y = yp, and the proposed algorithm can not be used on this problem. However,
the discontinuity in the derivative can easily be smoothed. For instance, let the spring compression
be e = yp − y and choose an α > 0, then

F (e) =





0 0 > e
k
2αe2 0 ≤ e < α

ke− kα
2 otherwise

is C1. The final equation of motion for this system relates the air flow into the cylinder, which is
the control u(t), to the equilibrium position yp of the piston. Assume for the following that the
equation ẏp = u approximates this relationship.

When the hopping machine begins its operation, we are interested in starting from rest, and
reaching a desired hop height yo

N at time tf . If we minimize

J(u) =
1
2
qfin(y(N)− yo

N )2 + ẏ(N)2 +
tf
2N

N−1∑

n=0

[
q yp(n)2 + r u(n)2

]
, (66)

the terms outside the summation reflect the desire to reach the height at time tf with zero velocity,
and the terms inside the summation reflect the desire to minimize the gas used to achieve this.
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Figure 3: Maximum height hopping motion and minimum fuel control.

The weighting on yp is used to keep the piston motion within its bounds. We conducted numerical
experiments on this system with the following parameters: k/m = 500, g = 386.4, α = 0.1. We
assumed that all states were initially zero, and that the initial control sequence was zero. The cost
function parameters were selected as: yo

N = 20, tf = 1, qfin = q = 1000, and r = 1.0. As in the
last example, a simple Euler approximation was used to discretize the equations, with N = 100.

Note that the algorithm produced an alternating sequence of stance phases and flight phases
for the hopping system and it naturally identified the times to switch between these phases. If one
were to use collocation methods to solve this problem with explicit consideration of the different
dynamics in the different phases, one would have to guess the number of switches between phases
and would need to treat the times at which the switch occurs as variables in the optimization.
Consistent with the discussion of the Gauss-Newton convergence rate, our algorithm converges
much faster when the weighting on the control r is increased; also the number of iterations required
for convergence in this problem increases for larger yo

N , ranging from 3 for yo
N = 1, to 166 for

yo
N = 50. In addition, the algorithm failed to converge for α < 1 × 10−5, which demonstrates the

need for the dynamics to be continuously differentiable.

5 Conclusion

We developed an algorithm for solving nonlinear optimal control problems with quadratic perfor-
mance measures and unconstrained controls. Each subproblem in the course of the algorithm is a
linear quadratic optimal control problem that can be efficiently solved by Riccati difference equa-
tions. We show that each search direction generated in the linear quadratic subproblem is a descent
direction, and that the algorithm is convergent. Computational experience has demonstrated that
the algorithm converges quickly to the optimal solution. Finally, we show that the proposed SLQ
algorithm can be interpreted as the Gauss-Newton method applied to a least-squares reformulation
of the optimal control problem and thus explain its excellent rate of convergence observed in simu-
lations. The SLQ algorithm is proposed as a powerful alternative to Newton methods in situations
that second order derivative information on the system dynamics is not available or expensive to
obtain and a near real-time solver is required.
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Appendix A

Proof of Theorem 2 We show that under the exact line search assumption Dk = ∇J [Uk] · Ūk

has a subsequence that converges to zero as k →∞. Notice that for any fixed ε such that 0 < ε < 1
and α sufficiently small, it holds

J [Uk + αŪk] ≤ J [Uk] + εαDk. (67)

Let ᾱk be such that (67) is satisfied with equality (such ᾱk < ∞ exists since otherwise J [Uk+αŪk] →
−∞ as α → ∞, contradicting the fact that J is bounded below by zero.) From the mean value
theorem, there exists βk with 0 ≤ βk ≤ ᾱk such that

J [Uk + βkŪk] · Ūk = εDk. (68)

Then, it holds
J [Uk]− J [Uk+1] ≥ J [Uk]− J [Uk + ᾱkŪk] = εᾱkDk. (69)

Since J [Uk] is monotonically decreasing and bounded below (by zero), it converges to some value
and (69) implies that ᾱkDk → 0. Let us assume that ‖Dk‖ ≥ η > 0 for all k. Then, it must
be that ᾱk → 0 and thus βk → 0. Now divide both sides of (68) by ‖Dk‖ and note that since
D̄k ≡ Dk/‖Dk‖ belongs in the closed unit ball of R, a compact set, it has at least one limit point
D̄∗ that satisfies from (68), D̄∗ = εD̄∗, or D̄∗ = 0, which a contradiction. Therefore, we conclude
that there is a subsequence of Dk that converges to zero.
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