
 
 

 

  

Abstract—This paper describes the development of a novel 
control system for a robotic arm orthosis for assisting patients 
in motor training following stroke.  The robot allows 
naturalistic motion of the arm and is as mechanically compliant 
as a human therapist’s arms.  This compliance preserves the 
connection between effort and error that appears essential for 
motor learning, but presents a challenge: accurately creating 
desired movements requires that the robot form a model of the 
patient’s weakness, since the robot cannot simply stiffly drive 
the arm along the desired path.  We show here that a standard 
model-based adaptive controller allows the robot to form such 
a model of the patient and complete movements accurately.  
However, we found that the human motor system, when 
coupled to such an adaptive controller, reduces its own 
participation, allowing the adaptive controller to take over the 
performance of the task. This presents a problem for motor 
training, since active engagement by the patient is important 
for stimulating neuroplasticity.  We show that this problem can 
be solved by making the controller continuously attempt to 
reduce its assistance when errors are small. The resulting robot 
successfully assists stroke patients in moving in desired 
patterns with very small errors, but also encourages intense 
participation by the patient.  Such robot assistance may 
optimally provoke neural plasticity, since it intensely engages 
both descending and ascending motor pathways.    

I. INTRODUCTION  
VER 700,000 people in the U.S. suffer a stroke each 
year, and about 80% of these individuals suffer a loss 

of control of the arm and hand [1].  Intensive sensory motor 
training stimulates neural plasticity and can increase 
movement ability following stroke [2-4].  However, it is still 
not well understood what the optimal sensory motor training 
techniques are for encouraging motor re-learning.  At a basic 
level, we know that training must be repetitive and intensive, 
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and must engage voluntary descending pathways [5].  
Manual assistance that helps limbs move along normative 
trajectories during training may also improve recovery, 
simply by stretching soft tissue or perhaps by providing 
afferent input that enhances neuroplasticity. 
 Over the past decade, there has been increasing interest in 
automating sensory motor training following stroke with 
robotic devices [6-9] that attach to the limbs of patients and 
assist the patients in performing movements.  One 
motivation for using robotic devices is that long-duration, 
repetitive training might be delivered more cost effectively.  
Another motivation is that the robotic device provides a tool 
for implementing and testing specific therapy algorithms for 
their efficacy.  Initial clinical results with these devices have 
been promising: acute patients recover better and chronic 
patients recover more movement ability when they receive 
extra motor training with a robotic device [9-11].  However, 
while significant, the movement gains achieved with robotic 
therapy are still small.  An important question is thus 
whether and how robotic therapy systems can be optimized 
to better provoke neural plasticity and functional recovery. 

 
Fig. 1.  A person with a stroke engaging in movement training with a 
robotic exoskeleton called Pneu-WREX. 

The goal of this project is to address one possible 
shortcoming of previous robotic therapy devices.  This 
shortcoming is that the devices do not always “assist-only-
as-needed” in helping patients to move.  For example, 
devices have often been made mechanically stiff in order to 
accurately move a patient’s arm [7, 10, 12].  Making a robot 
stiff removes the ability of the patient to influence the robot, 
and we hypothesize that it may thus inhibit learning.  In the 
area of locomotor training, for example, it was recently 
shown in a spinal-injured mouse model that a robotic 
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training algorithm that allows movement variability 
enhances locomotor recovery [13]. Allowing variability 
makes sense from recent motor learning research: when the 
nervous system experiences errors caused by errant motor 
commands, it quickly adapts those commands [14-16]; in 
other words, kinematic error drives adaptation. 
   Some previous devices, notably the MIT-MANUS [17] 
and ARM-In [18], were designed to be compliant to allow 
some errors, but no general algorithm has yet been proposed 
to allow such a compliant robot to successfully assist in 
arbitrary desired movements. For example, if motion in the 
vertical plane is allowed by the robot, it presents a problem 
for compliant control.  The weight of the average human 
arm is about 25 N.  If the robotic therapy device is 
compliant, with a stiffness at the low end of what the 
stiffness of a human therapist’s arms might be – 70 N/m [19, 
20], a position controller will exhibit an error of 0.36 meters, 
which is unacceptable if the robot is trying to assist the 
patient in making specific movements.  MIT-MANUS and 
ARM-In address this problem by weighing each patient’s 
arm for a given configuration and adding an offset term, but 
this approach is not general enough to provide different 
levels of assistance to assist with arbitrary spatial movement.  
Similar problems are experienced with compliant control 
when trying to move a patient’s arm to the end of its range 
of motion, where resistance to movement can greatly 
increase due to spasticity and disuse-related changes in soft 
tissue. 

Therapists learn to move patients’ arms accurately in the 
vertical plane and to the end of their range of motion despite 
the therapist’s arms’ own compliance, presumably by 
forming an internal model of the patient’s movement ability.  
In other words, the therapist senses the patient’s capability 
through hands-on interaction and then applies just enough 
force to allow a patient to succeed in performing a desired 
movement.  The human motor system’s ability to form 
internal models of external dynamics has been well 
documented in the past decade [21-23], and it seems likely 
that therapists exploit this ability to control the “external 
environment” created by their patient’s arms. 
 Here, we show for the first time how a robotic therapy 
device can learn a general, internal model of the patient’s 
impairment (i.e. the weakness due to both the neurological 
injury and muscle atrophy) in real-time.  We began with a 
standard model-based adaptive controller for this purpose, 
but observed an interesting phenomenon when we coupled it 
to humans.  The human motor system took advantage of the 
possibility to reduce its own participation, and allowed the 
adaptive controller to take over the performance of the task.   
This presents a problem for optimizing motor training, since 
active engagement by the patient is known to be essential for 
learning [24-26].  We show here, however, that the adaptive 
controller can be modified by making it attempt to reduce its 
force.  In this case, the human remains intensively engaged 
in the movement, but the compliant robot still helps make 

average movement errors small.   
In this paper, we first describe the design of the adaptive 

controller that forms the internal model, and the 
modification that includes forgetting to prevent patients 
from reducing their effort when interacting with the robot.  
We then present data from several experiments with the 
controller with unimpaired people and people with a chronic 
stroke.  Finally, we present data from one chronic stroke 
subject who trained regularly with the adaptive controller for 
eight weeks, significantly improving her movement ability. 

II. METHODS  
The robotic orthosis used for this work is called “Pneu-

WREX” [27, 28](Fig. 1).  It is a 4 degrees-of-freedom robot 
based on a passive arm support called WREX, developed for 
children by [29].  WREX uses elastic bands to balance the 
weight the arm.  Pneu-WREX is a larger version of WREX 
that uses a spring to balance its own weight, and 
incorporates pneumatic actuators to generate active forces.  
The development of the force controller for the pneumatic 
controller is described in [28].  Essentially, Pneu-WREX is a 
lightweight exoskeleton that allows a wide range of motion 
of the arm in 3D space and can apply relatively large forces 
(upwards of 40 N) to the arm with a bandwidth of about 6 
Hz.  Pneu-WREX also includes multiple redundant 
hardware and software safety features. 

The adaptive controller that we designed to assist patients 
in moving is a passivity based algorithm using the sliding 
surface developed in [30].  The full Lyapunov function 
candidate used for the Pneu-WREX orthosis contains terms 
necessary for both the orthosis dynamics and the force 
dynamics of the pneumatic actuators.  See [31] for details.  
The following sections briefly explain the dynamics of the 
human and orthosis combination, and the adaptive 
controller. 

A. Orthosis/Human Arm Dynamics 
The dynamics of the orthosis and human arm combination 

can be written as 
 ( ) ( ) ( ), , r h+ + = +M x x C x x x N x x F F  (1) 

where x  is a 1n×  vector of the workspace coordinates of 
the hand, rF  is an 1n×  vector of forces applied by the robot 
actuators which is mapped by the Jacobian to the hand 
position, hF  is an 1n×  vector of forces applied by the 
human subject at the location of the hand (representing 
subject contribution), M  is the n n×  generalized inertia 
matrix, C  is the n n×  Coriolis matrix, and N  is an 1n×  
vector of external forces acting on the orthosis, including 
gravitational, viscous, and potential forces.   

B. Adaptive Controller 
The controller design uses the sliding surface, s , and 

reference trajectory, w , developed in [30], and defined 

 
( ) ( )

( )
d d

d

= − + −

= − −d d

s = x + Λx x x Λ x x

w = x -Λx x Λ x x
 (2) 
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where x  and dx  are 1n×  vectors of the actual and desired 
location of the hand, respectively, and Λ  is an n n×  
symmetric, constant, positive definite, gain matrix.   

The standard control law for this method is  
 ( ) ˆ, , ,r P D= − −F Y x x w w b K x K x  (3) 

where PK  and DK  are symmetric, constant, positive 

definite gain matrices and ˆYb  is a model of the system 
dynamics and is defined as 

 ˆˆ ˆ ˆ= + +Yb Mw Cw N  (4) 

where M̂ , Ĉ , and N̂  are estimates of the dynamics of the 
orthosis and arm combination, Y  is a m n×  matrix of 
known functions of x , x , w , and w , and b̂  is an 1m×  
vector of parameter estimates. 
 In order to model arm weakness, we include the 
contribution of the subject in the control law so that 

 ˆ ˆ
r h P D= − − −F Yb F K x K x  (5) 

where ˆ
hF  is an estimate of the subject contribution, which 

we assume can be modeled as 
 ˆ ˆ

h =F Yh  (6) 

where ĥ  is an 1m×  vector of parameter estimates 
describing the contribution of the subject.  Using (6) in (5) 
and defining ˆ ˆˆ = −a b h  gives the final control law as 

 ˆr P D= − −F Ya K x K x  (7) 
where ˆYa  represents a model of movement impairment, i.e. 
the difference between the forces required to move along a 
desired trajectory and the contribution of the subject towards 
the same goal.  In the case of complete arm impairment, 

ˆ 0=Yh , and the controller will adapt to provide all of the 
necessary forces to complete movements.  In the case of an 
unimpaired arm, ˆ ˆ=Yh Yb , and controller adaptation will be 
minimal as the subject contributes the necessary forces to 
complete movements. 
  The estimates are adapted according the update law 

 1ˆ T−= −a Γ Y s  (8) 
where Γ  is a symmetric, constant, positive definite gain 
matrix.  The controller defined by (7), and (8) is globally 
asymptotically stable (following an analysis similar to [32]). 

 For the controller presented in this paper we developed a 
general representation of arm weakness using radial basis 
functions [33] as the regression matrix Y .  Essentially, the 
use of these basis functions allows the model parameters to 
vary as an arbitrary function of the state (i.e. position and 
velocity) of the arm, where the robot learns this arbitrary 
function by experience. 

C. Assist-As-Needed Modification 
We added a modification to the model update law (8) in 

order to minimize the force applied to the subject, motivated 
by the work of [34].  We desire that the controller will decay 
the force applied by the orthosis when the subject is able to 
complete movements without assistance.  In particular, the 

partial derivative of the modeled arm weakness force with 
respect to time should behave according to  

 ( )ˆ ˆ ˆrft
∂

= = −
∂

Ya Ya Ya  (9) 

where ˆYa  is the force applied to the subject’s arm by the 
adaptive controller according to (3), and 1rf τ=  is the 
forgetting rate of the robot (τ = time constant).  In general, 
Y  is an n m×  matrix with m n>  and rank n .  Thus there 

are an infinite number of solutions for â  that satisfy (9).  

For our controller we seek the shortest solution for â .  This 
is done by solving the constrained minimization problem 

 { }1
2

ˆ ˆ ˆ ˆmin : f : g 0T
rf= = − − =a a Ya Ya  (10) 

The minimum solution to (10) is  

 ( ) 1
ˆ ˆT T

rf
−

= −a Y YY Ya  (11) 

This term is added to the right side of (8) to create the 
modified parameter update law: 

 ( ) 1 1ˆ ˆT T T
rf

− −= − −a Y YY Ya Γ Y s  (12) 

Lyapunov stability analysis of the modified parameter 
update law (using a method similar to that given in [32] ) 
shows stability the sense of uniform ultimate boundedness. 
This bound is a function of the forgetting rate, rf .   In 
practice, this forgetting rate weighs the balance between 
tracking error and robot effort. 

D. Experimental Methods 
We tested both versions of the adaptive controller (i.e. 

with and without the forgetting term) with three unimpaired 
adults and nine volunteers with a chronic stroke. For these 
experiments, the proportional gain, PK , was set to 70 N/m. 
All experiments were approved by the IRB of U.C. Irvine 
and subjects provided informed consent.  

The goal of these initial experiments was to determine 
how well the adaptive controller “assisted-as-needed” in 
helping a person achieve a desired movement.  The subjects 
were instructed to try to follow a target cursor on a computer 
display by controlling a second cursor which represented the 
endpoint of the orthosis.  The target cursor moved back and 
forth between two targets along a minimum jerk trajectory 
with peak velocity of 0.12 m/sec. In arm coordinates, the 
targets were spaced 30 cm apart in the horizontal plane at 
chest level approximately 45 cm in front of the body.  For 
the unimpaired subjects, a constant, downward load of 8.9 N 
was applied to the arm to make the movements more 
effortful, like movements by stroke patients are. 
 We evaluated two experimental conditions.  For the first 
condition (Subject Relaxed to Active condition), the subjects 
began with their arms relaxed for five back-and-forth 
motions of the robot.  During this period, the robot learned a 
model of the forces needed to lift the subject’s arm and 
move it between the targets.  Then, beginning at the sixth 
back-and-forth motion and continuing for 15 more, the 
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subject began to actively attempt to move the arm between 
the targets.  The question of interest for this condition is 
whether the robot then was “smart enough” to sense the 
subject’s movement ability and allow the subject to begin to 
perform the task on his or her own.   
 In the second experimental condition (Subject Always 
Active condition), the subjects simply moved back-and-forth 
between the targets 20 times.  The task of the adaptive 
controller in this case was to learn how much force the 
subjects needed to successfully achieve the desired 
movement.  An adaptive controller that performed poorly in 
this case might gradually “take over” performance of the 
task from the subject, for example, providing too much 
support. 
 For both experimental conditions, we measured 
performance of the controller without forgetting, and with 
the forgetting rate rf  set to 0.1, with the order of the 
conditions randomized. 
 We also conducted a pilot study of the therapeutic 
efficacy of the controller.  In this study, one female chronic 
stroke subject (aged 46, 11 years following stroke) practiced 
movements with the adaptive, assist-as-needed controller 
three sessions per week for eight weeks, with each session 
lasting one hour.  The controller, with a forgetting term, was 
integrated into simple virtual reality games that simulated 
functional activities like reaching for items on a shelf, 
picking up an egg and cracking it over a pan, and cleaning a 
window (see [31] for description of games).  The subject 
was evaluated before and after the training period with 
standard clinical measures of upper arm movement ability, 
and during the training period with several robot-based 
measures of motor ability. 

III. RESULTS 
We developed an adaptive controller that learns in real-

time a model of the movement impairment of a subject as 
they attempt to move their arm with the assistance of a 
robotic orthosis.  Fig. 2 shows the vertical forces learned by 
the robot controller for a moderately impaired stroke subject 
during the Subject Relaxed to Active condition experiment at 
different time samples as a function of the horizontal and 
vertical position of the subject’s hand.  The robot learned to 
apply large forces when the subject relaxed for the first 5 
movements (Surface A), and continued to apply large forces 
after the subject actively participated in the next 15 
movements (Surface B) when 0rf = , When the subject 
repeated the experiment with 0.1rf = , the robot learned to 
apply smaller forces (Surface C), although these forces were 
still non-zero as the subject was impaired.  

We analyzed further how human subjects interacted with 
the adaptive controller with and without including a 
forgetting term in the controller, by examining the vertical 
force that the robot learned to apply as a function of time 
(Fig. 3).  For the Subject Relaxed to Active condition, when 
the subjects relaxed their arms, the robot quickly (in about 
10 sec) learned the amount of vertical force needed to lift 

the arms to the targets’ height. When the subjects then begin 
trying to move their arms, the pattern of change in vertical 
force applied by the controller depended on whether 
forgetting was incorporated.  Without forgetting, the 
controller did not let the subject “take over” performance of 
the task, and the vertical force stayed large, relieving the 
weight of the subject’s arm.  With forgetting, the controller 
gradually reduced its force, requiring the subjects to begin 
lifting their own arms. In both cases the vertical tracking 
error was small.  Thus, including the novel forgetting term 
into the standard adaptive controller better engaged the 
subject’s efforts, while still keeping tracking error small. 

−30 −20 −10 0 10−22
−20

−18

5

10

15

20

X (cm)

Vertical Assistance Model

Z (cm)

F 
(N

)

A

B

C

 
Fig. 2.  Impairment model built during target tracking in Subject Relaxed 
to Active condition for a moderately impaired stroke subject Fugl-Meyer 
score = 30).  Surfaces represent vertical force output of the model as a 
function of vertical (Z) and left to right (X) position, at a distance of 45 
cm out from body center.  Surface A shows the model after the robot 
completed 5 movements with the subject relaxed (without forgetting).  
Surface B shows the model after the subject participated in the next 15 
movements without forgetting.  Surface C shows the model after the 
subject repeated the experiment, relaxing for 5 movements and then 
completing the next 15 movements with forgetting equal to 0.1. 

In the Subject Always Active condition, the subjects 
allowed the controller to take over some degree of the 
tracking task when the controller did not incorporate 
forgetting. This is evident in Fig. 3, which shows that the 
robot force gradually increased as the subjects practiced 
moving. For each subject, the controller took over most of 
the vertical force, converging to levels similar to those at the 
end of the Subject Relaxed to Active condition test.  For both 
conditions, the vertical assistance from the controller 
converged to an amount that varied appropriately with the 
impairment level of the subject. 
      Fig. 4 shows a summary of the vertical assistance force 
learned by the robot, and the tracking error achieved by the 
subject, with and without forgetting.  Subjects contributed 
significantly more force to the tracking task with  forgetting 
present in the adaptive controller (t-test, p < 0.05).  Tracking 
error was under 1.5 cm even for the most impaired subjects.
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Fig. 3.  Vertical assistance force learned by the robot and position tracking error during Subject Relaxed to Active  condition (labeled “A” in the top force 
plots) and Subject Always Active condition (labeled “B”).  Left column is data from a mildly impaired subject (Fugl-Meyer score = 53), middle from a 
moderately impaired subject (Fugl-Meyer score = 30), and right from a severely impaired subject (Fugl-Meyer score = 16).  The dotted vertical line marks 
the end of the 5th back and forth movement.  Notice that tracking errors are consistently small, indicating that the robot successfully assisted the subjects 
in moving.  However, the amount of assistance force is smaller when the robot has forgetting.  Without forgetting, the human lets the robot assistance 
force gradually increase (see black lines labeled “B”). 

 
Fig. 4.  Mean vertical assistance force provided by Pneu-WREX as a 
function of patient impairment (severely impaired, Fugl-Meyer < 24, n = 
4; moderately impaired, 24 < FM < 66 n = 4; unimpaired, FM = 66, n = 
3).  The task was to track a cursor that moved between two targets placed 
in the frontal plane at chest height.  With a forgetting rate in the adaptive 
controller, the robot contributed significant less support force (grey bars 
versus white bars in top plot, paired t-test across subjects, p < 0.05), 
indicating that the subjects exerted more force as they performed the task.  
Tracking error increased with forgetting present, but was still under 1.5 
cm even for severely impaired patients who could not do the task without 
robot assistance. Data is from Relaxed to Active condition.  The error bars 
show one standard deviation across subjects. 

We also used the adaptive, assist-as-needed controller in a 
pilot study of motor training with the robot for one chronic 

stroke subject.  Quantitative and clinical measures of the 
subject’s movement ability show that the subject’s 
movement ability improved.  Fig. 5 shows the peak speed of 
movement of the subject in the vertical direction during a 
test in which she was asked to move as fast as possible 
without help from the robot.  The subject’s Fugl-Meyer arm 
score changed from a rating of 27 to 30, an 11 % change. 

 
Fig. 5.  Peak vertical speed of movement for chronic stroke subject 
during  movement training increased (p <0.001 linear regression). 

I. DISCUSSION AND CONCLUSION 
These results are a step forward in addressing what we 

believe is a fundamental problem in robot-assisted 
movement training: how can a device encourage effort from 
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the patient, assisting only as needed, while remaining 
compliant so as to allow the patient to create some error?  
We found that an adaptive controller modified to include 
forgetting can be used to form a real-time model of the 
patient’s weakness and encourage effort.  The forgetting 
term appears necessary because the human motor system is 
structured to reduce effort when errors are small.  This 
finding is consistent with recent work in motor adaptation 
that found that unimpaired subjects minimize both kinematic 
error and muscle effort when adapting to novel dynamic 
environments [11, 14, 35].  Using a computational model of 
motor adaptation and an optimization approach, [14] showed 
how the inclusion of a forgetting term in an error-based 
controller can allow unimpaired subjects to learn an internal 
model of a force field during walking, without experience 
large errors.  The controller developed here is similar, 
although more sophisticated as it achieves the task of 
moving a limb along any arbitrarily-defined trajectory with 
such “assistance-as-needed”. 

The pilot data from using the controller to train one 
person with a chronic stroke was promising: the subject 
improved both clinical and quantitative scores of movement 
ability.  We plan now to test whether this “assist-as-needed” 
adaptive controller is therapeutically more effective than a 
controller without forgetting, in a randomized, controlled 
clinical test with 30 patients.  Because it more intensely 
engages the patient’s descending motor tracts, while also 
helping create normative movements and thus afferent input 
that is correlated with motor intent, we hypothesize that it 
will be more effective. 
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