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The Number of Saturated Actuators and Constraint
Forces During Time-Optimal Movement
of a General Robotic System

J. M. McCarthy and J. E. Bobrow

Abstract—In this paper we prove that if the dynamics of a general robot
system are defined by »n coordi m differential constraint equations,
and p actuators, then some combination of at least L = m+p+1—n
of the actuators and internal constraint forces are saturated during a
time-optimal movement of the system along a prescribed path. The result
applies to a general class of dynamic systems with both holonomic and
nonholonomic constraints.

1. INTRODUCTION

The movement of a robotic system from one position to another
along a prescribed path can be accomplished in minimum time by
maximizing the acceleration or deceleration along the path, subject to
limits on the torque that can be applied to the actuators; see {1], [10].
In this paper we show that, for general robotic systems, the maximum
or minimum acceleration is determined from a linear programming
problem. The fact that the solution of a linear programming problem
is an extreme point of the set of feasible solutions allows us to
compute the minimum number of actuator torques and internal
constraint forces that must equal their bounds during the time-optimal
movement.

We believe this is a new result that generalizes the results of {1] and
[10] to include a general class of constrained robotic systems such
as those studied by Huang and McClamrock [5] and Mills and Gold-
enberg [9]. This work focusses primarily on the theoretical aspects
of the problem, particularly the number of saturated constraints in a
general robotic system. An example of the application of these results
to time optimal control of cooperating robots can be found in [2].

I1. EQUATIONS OF MOTION

We consider robotic systems that are described by equations of
motion of the form

M(@)i+ H(g.4) = Blg)r + ®(¢)" A )

where ¢ € R" are the configuration coordinates of the system,
M(q) is an n x n matrix defining its inertia, and H(q.q) is the
vector of Coriolis, centrifugal, and gravitational terms. The vector
7 € RP defines the actuator torques applied to the system, and the
m X p matrix B(q) defines how these torques act on the configuration
coordinates ¢. The matrix ®$(q) is an m X n matrix that defines the
differential (holonomic and nonholonomic) constraints on the system,
defined such that

d(q)g = 0. 2

Using a standard Lagrangian formulation of the dynamics, we find
that the vector A € R™ defines the internal forces in the system
required to satisfy these constraints; see {4]. In addition, physical
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considerations yield constraints on the individual actuator torques
and internal forces such that

T <r<tt oand AT <A<AT 3)
where the vectors and in R? and R™ are known bounds. Note that

AT and A™ may be arbitrarily large to allow for the case of large
forces generated by robots contacting the environment.

HI. TIME-OPTIMAL CONTROL

Let C denote the set of values ¢ € R" defining all configurations
available to the robotic system, termed its configuration space. A
curve ~(s) in (' defines a sequence of positions foliowed by the
system.

Definition 1: An admissible path is a parameterized curve, y(s) :
[0,1] — C, with 7(0) = ¢o and 7(1) = ¢1 as the start and goal
configurations, defined such that

1) |'(s)] # 0 almost everywhere in the interval s € [0.1], the

prime, , denotes differentiation with respect to s);

2) it satisfies the constraints ®(¢)~’ = 0; and

3) it has continuous second derivatives.

The Time-Optimal Control Problem: The goal in the time-optimal
control problem is to determine the movement s(t), where ¢ € [0.¢],
s(0) = 0 and s(t;) = 1, along a specified path v(s), that minimizes
the traversal time f;.

Lemma 1: Given a robotic system defined by (1) and an ad-
missible path ~(s) in its configuration space ', with initial states
~{0) = qo.%(0) = ¢o and final states (1) = ¢1.%(1) = qi.
Then the time-optimal control problem becomes: for the system
u(t), find the control u(t) that minimizes the traversal time
t, with f(s.8) < u < g(s.$) where f(s.5) and g(s,$) are the
minimum and maximum values of § subject to constraints defined
by (1) and (3).

Proof: Given the admissible path, ~(s), we can compute the
position and velocity of the system, ¢ and §, in terms of s(t) as

5§ =

G=~'(s)4
"

G=1"(5)" +~'(s)5. @)
The second derivative § of the movement s(t) is constrained by the

dynamics of the robotic system. Substituting ¢ = ~(s) and (4) into
(1), we obtain

M(s){+' ()3 +1(s)5} + H(5.5) = B(s)r + B(s)" X (5)

where the overbar denotes transformed coefficients of (1). We can
collect terms and write this as

a(s)i +b(s.3) = B(s)T + ®(s)T A (6)

where a(s) = M(s)y(s) and b(s.$) = 3 (s)7'(s)5> + H(s.5).
Let f(s. %) denote the minimum value of § and g(s, §) its maximum
value, which satisfy (6) for given values of s and s, and the actuator
and internal force constraints (3).

We now let 5 = u(t) and seek the control u(¢) that minimizes the
traversal time ¢y with f(s.5) <« < g(s.$). Given 5§ = u(#)and the
initial states s(0) = 0 and $(0) = v, and the final states s(t5) = 1
and s(t;) = vy, we integrate this ordinary differential equation to
obtain the desired movement s(t). Q.E.D.
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Theorem 1: Given a system § = u(t) such that f(s.5) < u <
g(s. 8), then the time-optimal control is saturated at any instant during
the motion, that is, the control is either at its maximum v = g(s, $)
or minimum value v = f(s.$) for all ¢ € [0.tf].

The proof of this theorem is obtained using the Maximum Prin-
ciple; see Leitmann’s discussion of a time-optimal regulator with
velocity dependent control bounds [7, section 13.11]. The algorithm
for determining when to switch from maximum acceleration to
maximum deceleration is found in [1].

IV. THE LINEAR PROGRAMMING PROBLEM

Our result on the minimum number of saturated actuators and
internal forces follows from the fact that the maximum (or minimum)
acceleration of the system is the solution to a linear programming
problem.

Lemma 2: If the position and velocity, s and $, of the system are
known, then the maximum (or minimum) value of § is the solution to
the linear programming problem: Find the value of the vector € R
with #; > 0. ¢ = ..., a that maximizes (or minimizes) cTz subject
to the 3 linear constraints [A]lz = d.

Proof: Given a position and velocity, s and 3, (6) becomes a set
of n linear equations in the p+m <1 unknowns 7, A, and §. Assemble
these unknowns into the vector y = (7. A, 5) so y € RPT™*'. The
coefficients of (6) can be assembled into the n x (p + m + 1) matrix
[C] = [B.®".—a], so we have the n equality constraints on y

[Cly=¢. M

The bounds on the actuators and internal forces are defined by (3),
and for convenience, let § be bounded 5~ < 5 < §t, where §~ and
51 are smaller and larger, respectively, than any acceleration required
for the time-optimal control of this system. Therefore, we may collect
the constraints into the single equation

y <y<yt ®)

In order to obtain the standard form for the linear programming
problem, we must make a change of variables. Let the vectors
z1. x2 € RPT™*! be defined such that

nn=y—y 20
z=y" —y>0. ©)

Now define by = b — [Cly~ so that [Clan = [Clly —y™) =
b— [Cly~ = by, and define b, = z; + zo = y* — y~. The result
is that the constraints (7) and (8) can be combined into the single

equation
c 0 T | _ bl _
€ =] =[8] o ve=a

Note that I is a [p + m + 1] x [p + m + 1] identity matrix, and
T _ (T T
' = (x].x5).
The goal is to maximize §, which is the same as maximizing §—57;
therefore, we define the objective function of the linear programming
problem to be ¢!z, where

(10)

T —
¢ =(c1.09,.... C2(ptm+1) s

iFp+m+1, 1y

The result is that maximizing (or minimizing) the acceleration of
the robot system along an admissible path becomes the linear
programming problem that seeks to find the vector = with positive
components by (9), which maximizes (or minimizes) the linear
objective function (¢’ z), subject to the linear equality constraints
(10). Note that the number of unknowns is a = 2(p + m + 1) and
the number of equations is 3 =p+m + 1+ n. Q.E.D.

Cptmt1 = L.

Assumption 1: Proper formulation of the linear programming prob-
lem requires that there be more unknowns, 2! = (:c,T,zg), than
equations in (10); therefore, we assume that p+m +1—n > 0.

This assumption assures that there are enough actuators in the
robotic system so that a maximum (or minimum) acceleration can
be achieved.

Assumption 2: Shiller [9] shows that paths exist for which one
or more of the elements of the vector a(s) in (6) may be zero
over a range of motion. On these so-called critical arcs the desired
acceleration § is not obtained as a solution to a linear programming
problem. In what follows we assume the paths contain no critical arcs.

We now state without proof some important properties of the
solutions to linear programming problems.

Definition 2: The solutions to the linear constraint equations (10)
that satisfy (9) form the set of feasible solutions to the linear
programming problem.

Theorem 2 (from [3]): The objective function (cTa:) assumes its
minimum (or maximum) at an extreme point of the convex set
generated by the set of feasible solutions to the linear programming
problem.

For our purposes, the definition of an extreme point is provided
by the following theorem.

Theorem 3 (from [3]): Let the columns of the matrix [A] in ;3
linear constraints [4)z = d be denoted P;, i = 1,..., o and let
Py =d. If aset of k < 3 vectors P, Py..... P). can be found that
are linearly independent such that

1Py +oePo+ ...+ Py =Py (12)

and all o, > 0, then the point z = (xy.22.... &k, 0,000, 0) is an
extreme point of the convex set of feasible solutions. Here, z is an
a-dimensional vector whose last a — k elements are zero.

Finally we have our theorem:

Theorem 4: The time-optimal control of a robotic system, defined
by n equations of the form (1) with p actuators and m differential
constraints, satisfying assumptions 1 and 2, will have at least L =
p+ m + 1 — n actuators or internal forces set equal to their bounds
at any instant during the movement.

Proof: The matrix [C] in (7) has » as its maximum rank, and
the matrix [A] in (10) with columns P;. i = 1,....2(p + m + 1),
has n + p + m + 1 as its maximum rank, which is the maximum
number of P; that can be linearly independent. This together with
Theorems 1 and 2 require that a solution x have at least L =
20p+m+1)~(n+p+m+1)=p+m+1—n zeros. A zero value
of an element of z corresponds to an actuator or an internal force
equal to its bound. Recall that the bounds §* and §~ are defined so
that § cannot attain them. Q.E.D.

V. DEGREE OF FREEDOM

Theorem 4 applies to any dynamic system that has equations of
motion of the form (1). Let us now assume that the system has a
particular form.

Assumption 3: Assume the robotic system consists of N rigid
bodies (including the base) and A joints connecting some or all
of the bodies.

Since each of the N bodies have six degrees of freedom (except the
ground body, which has zero freedom) at most 6(V — 1) coordinates,
¢ € R°¥~Y are required to define the configuration of the system.

Definition 3: Let the term joint refer to a connection between two
rigid bodies that is characterized by one or more constraint equations
of the form h(gq) = 0. Constraints of this type are termed holonomic.

Definition 4: Let u; be the number of holonomic constraint equa-
tions that characterize joint ¢; then f; = 6 — u; is the freedom of
the ith joint.
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Lemma 3: We now have the well known Kutzbach—Griibler for-
mula [6]. If the holonomic constraints imposed by the joints of the
mechanism are independent, then the system of .\ bodies (including
the base) and 1/ joints has the degree of freedom J = 6(N — 1 —
A) + .. For a single-loop closed chain, d = (X f,) — 0.

The number of coordinates  chosen to represent the configuration
of a mechanism can vary in the range ¢ < n < 6(.\' —1). Sometimes
the set of ¢ joint parameters parameterize the configurations of the
mechanism. In this case the holonomic constraints are identically
satisfied and do not appear explicitly. This occurs in the case of six-
degree-of-freedom (6-DOF) open-chain robots. The usual situation
is that some though not all of the holonomic constraints can be
eliminated in this way. For the remaining, it is more convenient to
introduce them into the equations of motion as differential constraint
equations. Notice that for n > d coordinates, we must have »n —
d differential constraint equations associated with the remaining
holonomic constraints.

We can now divide the number of differential constraints v into &
arising from nonholonomic constraints and » — d obtained from the
holonomic constraints. Thus, m = n — d + k.

Corollary to Theorem 4: For systems described by Assumption
3 with d degrees of freedom, & nonholonomic constraints, and p
actuators, the minimum number of actuators and internal forces at
their bounds is L = p+ k + 1 —d.

Proof: For this case, p + m +1 —n becomes p+ (n —d+ k) +
l—-n=p+hik+1-4d. Q.E.D.

Example 1—A Spatial 6-DOF Robot Arm: This system has p =
6, d = 6, and k = 0, so it will have at least one saturated actuator.

Example 2—A 6-DOF Robot Arm with Its End-Effector Maintaining
Contact with a Plane: The contact between the end-effector and the
plane is a 3-DOF joint, so the system has seven joints for a total
of nine joint freedoms. The system is a single-loop closed chain, so
d=9—06=3. With p =6 and & = 0, we find that L = 4 actuators
or internal forces must be saturated. If a nonholonomic constraint is
applied to the movement of the end-effector on the plane, we obtain
an additional saturated actuator or internal force.

Example 3—Cooperating 7-DOF Robots: The single-loop closed
chain formed by two 7-DOF robots holding a workpiece has degree
of freedom d = 8. Therefore, because p = 14 and k& = 0. we have
L = 7 saturated actuators or internal forces.

VI. CONCLUSION

This paper formulates the time-optimal control problem for general
robotic systems and shows that the required maximum (or minimum)
value of the path acceleration is the solution of a linear programming
problem. The fact that such a solution is an extreme point of the set
of feasible solutions allows us to determine the minimum number of
actuators and internal forces that must be saturated during the time-
optimal movement. The general formulation applies to a large class
of robotic systems. Example calculations for several different robotic
systems are provided.
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On the Global Uniform Ultimate Boundedness
of a DCAL-Like Robot Controller

D. M. Dawson and Z. Qu

Abstract—In this paper, we illustrate how the nonadaptive part of the
desired compensation adaptive law (DCAL) is a special case of a class
of controllers that can be used to obtain a global stability result for the
trajectory following problem for robot manipulators. This class of robot
controllers is a simple linear proportional derivative (PD) controller plus
additional nonlinear terms that are used to compensate for uncertain
nonlinear dynamics. To analyze the stability of this class of controllers,
Lyapunov’s second method is used to derive a global uniform ultimate
boundedness (GUUB) stability result for the tracking error. We then
illustrate how the controller gains can be adjusted to obtain better
tracking performance in spite of the uncertainty present in the robot
manipulator dynamic equation.

[. INTRODUCTION

Over the last decade there has been much interest in the robust
tracking control of robot manipulators [3]. Tracking control means
that the controller should force each joint to follow a predetermined
desired joint trajectory as a function of time. As a means of quan-
tifying how well the controller is doing its job, one usually refers
to the differcnce between the desired joint trajectory and the actual
joint trajectory as the tracking error. Therefore, if the norm of the
tracking error is “small,” one can be reasonably assured that the
control objective is being met.

If the robot manipulator dynamics are known exactly, the so called
computed-torque controller can be used to obtain good tracking
performance [4]. However, an exact model of the robot manipulator is
not usually available due to uncertainties such as unknown payload
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