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s-BasedRobot Movement OptimizationSung-Hee Lee, Junggon Kim, F.C. Park, Munsang Kim, and J.E. BobrowAbstra
t| This arti
le des
ribes Newton and quasi-Newton optimization algorithms for dynami
s-based robotmovement generation. The robots that we 
onsider aremodeled as rigid multibody systems 
ontaining multiple
losed loops, a
tive and passive joints, and redundant a
tua-tors and sensors. While one 
an, in prin
iple, always derivein analyti
 form the equations of motion for su
h systems,the ensuing 
omplexity|both numeri
 and symboli
|ofthe equations makes 
lassi
al optimization-based movementgeneration s
hemes impra
ti
al for all but the simplestof systems. In parti
ular, numeri
ally approximating thegradient and Hessian often leads to ill-
onditioning andpoor 
onvergen
e behavior. We show in this arti
le thatby extending|to the general 
lass of systems des
ribedabove|a Lie theoreti
 formulation of the equations of mo-tion originally developed for serial 
hains, it is possible tore
ursively evaluate the dynami
 equations, the analyti
 gra-dient, and even the Hessian for a number of physi
ally plau-sible obje
tive fun
tions. We show through several 
asestudies that with exa
t gradient and Hessian information,des
ent-based optimization methods 
an be forged into ane�e
tive and reliable tool for generating physi
ally naturalrobot movements.Keywords| Movement optimization, robot dynami
s,Newton's method, 
losed 
hain, redundant a
tuation, multi-body system dynami
s.I. Introdu
tionAMONG the many innate physi
al abilities of humans,motor 
ontrol is the skill that is most often taken forgranted, as it seems to require very little 
ons
ious e�ort onour part. Only when a parti
ular motor skill is impairedor lost does one then begin to fully appre
iate the diÆ-
ulty of motor 
ontrol. It 
omes as no surprise that theseexa
t same diÆ
ulties are en
ountered, indeed even mag-ni�ed, when attempting to endow robots with a movementgeneration 
apability like that of humans.The broad aim of this paper is to emulate the low-level 
apabilities of human motor 
oordination and learningwithin the framework of optimal 
ontrol theory. Our ap-proa
h is based on the simple observation that, in nearlyall of the motor learning s
enarios that we have observed,some form of optimization with respe
t to a physi
al 
rite-rion is taking pla
e.There is ample biologi
al eviden
e to justify anoptimization-based approa
h to movement generation. Inthe literature one 
an �nd many optimal 
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studies of various human motions, e.g., maximum-heightjumping [24℄, voluntary arm movements [15℄, maintainingpostural balan
e [14℄, minimum-time running and swim-ming [17℄, even wheel
hair propelling [35℄. Besides some ofthe more obvious optimization 
riteria like minimum en-ergy or 
ontrol e�ort, strategies that involve minimizingthe derivative of a

eleration (or jerk) [7℄, as well as mus-
le or metaboli
 energy 
osts [1℄, have also been examinedin the 
ontext of spe
i�
 arm motions. Models for humanmotor learning and 
ontrol that take into a

ount both themus
le dynami
s and features of the neural system havebeen proposed in, e.g., [33℄, [11℄, [9℄.Some resear
hers have also presented biologi
al eviden
esuggesting that the nervous system impli
itly performs in-verse dynami
s to generate feedforward motor 
ommands[32℄, parti
ularly for fast motions. Previous resear
h alsoshows that it is possible to identify a

urate internal mod-els from movement data, and that su
h strategies 
an besu

essfully implemented in robots (see [2℄ and the refer-en
es 
ited therein). Aproa
hes to motor 
oordination andlearning based on equilibrium and hierar
hi
al approa
hesinspired by biologi
al systems [21℄, [5℄, and dynami
al sys-tems theory [10℄ have also been presented.From an engineering perspe
tive an optimization-basedapproa
h to movement generation usually strikes one asthe �rst reasonable thing to try. The reason that su
happroa
hes have been largely unsu

essful, it seems, isthat the 
omplexity of the dynami
 equations inevitablylead to intra
table optimization problems. Indeed, the in-tra
tability of the optimization seems at least partly|if notlargely|responsible for the re
ent 
urry of attention givento, e.g., neural networks, geneti
 algorithms, and other evo-lutionary optimization approa
hes to motor learning (see,e.g., [34℄, [26℄, [31℄).One of the arguments put forth in this paper is thatmovement generation based on dynami
 models and 
lassi-
al des
ent-type optimization methods is indeed a 
ompu-tationally feasible paradigm. In addition to our work, [6℄have also demonstrated the feasibility of this approa
h togenerate motions for tree stru
ture-like animated 
hara
-ters, by a suitable 
hoi
e of physi
s-based 
onstraints andobje
tive fun
tion. Stable open-loop motions for perform-ing forward somersaults have also been obtained via nu-meri
al solution of an optimal 
ontrol problem in [20℄.Aside from the 
omplexity of the nonlinear dynami
s,another reason 
lassi
al des
ent methods, despite their re-liability (indeed, in many 
ases these algorithms are theonly ones that 
an guarantee lo
al optimality and 
onver-gen
e), are bypassed in many of today's motion learnings
hemes is their relian
e on gradient and Hessian informa-
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iple one 
an numeri
ally approxi-mate these quantities, for problems involving even moder-ately 
omplex multibody systems, approximated gradientsand Hessians more often than not lead to ill-
onditioning,instability, and poor 
onvergen
e behavior, not to mentiona signi�
ant in
rease in 
omputation.One of the primary 
ontributions of this paper is that byappealing to te
hniques from the theory of Lie groups, it ispossible to formulate the equations of motion of even 
om-pli
ated antagonisti
 multibody systems like the humanbody in su
h a way as to render the optimization problemtra
table. In many 
ases the optimized motions 
an evenbe obtained quite eÆ
iently and in a numeri
ally robustway. The key lies in the ability to re
ursively evaluate thenonlinear dynami
s, and also to re
ursively 
ompute exa
tanalyti
 gradients and Hessians without resorting to nu-meri
al approximations. The resulting algorithms are still
omputation-intensive by today's standards, but are O(n)with respe
t to the number of rigid bodies 
omprising thesystem, and perhaps most important of all, robust.We begin by des
ribing the dynami
 modeling and op-timization algorithms developed using te
hniques from Liegroup theory. Some of the preliminary results spe
i�
 toserial 
hains have been reported in [27℄, in
luding the re-
ursive 
omputation of analyti
 gradients for serial 
hains[18℄, [12℄. In this paper we 
onsiderably enlarge the 
lass of
andidate me
hanisms, to 
hains 
ontaining multiple 
losedloops and an arbitrary number of a
tuators; this in
ludesantagonisti
, redundantly a
tuated systems like the humanbody. We also develop general re
ursive algorithms for ob-taining higher-order derivatives of the dynami
s for this
lass of 
hains.Based on these new algorithms, re
ursive Newton typeoptimization algorithms are then developed for generat-ing optimal movements. As is well-known, Newton meth-ods have quadrati
 
onvergen
e properties, and o�er supe-rior performan
e over purely gradient-based optimizationmethods like steepest des
ent. Examples of minimum ef-fort motions for various multibody systems are providedto demonstrate that these algorithms 
an serve as a basisfor generating eÆ
ient, physi
ally natural movements in arobust, 
omputationally e�e
tive manner.II. Problem StatementThe equations of motion for our systems, whi
h are mod-eled as a set of 
oupled rigid bodies, are of the formM(q)�q + C(q; _q) _q +N(q; _q) = � (1)where M(q) 2 <n�n is the mass matrix, C(q; _q) 2 <n�n isthe Coriolis matrix, and N(q; _q) 2 <n in
ludes gravity andother for
es (for the moment we 
onsider only holonomi
systems in whi
h the equations of motion are expressedin independent 
oordinates). One should not be de
eivedby the apparent simpli
ity of Equation (1); for even kine-mati
ally straightforward stru
tures like standard six-axisindustrial robots, analyti
 expressions for M(q), C(q; _q),and N(q) are extremely 
ompli
ated.

We will be interested in minimizing 
ost fun
tionals ofthe form J(�) = �(q; _q; tf ) + Z tf0 L(q; _q; �; t) dt (2)subje
t to Equation (1) and the boundary 
onditionsq(0) = q0; _q(0) = 0 (3)q(tf ) = qf ; _q(tf ) = 0 (4)where for some of our examples, � penalizes deviationsfrom the desired �nal 
ondition. For most of our examples,the e�ort L = 12 jj�ajj2 
aptures the desire to minimize theexerted joint torques. The �nal time tf may be either freeor �xed in our formulation; for the examples presented inthis paper tf is assumed �xed. For the 
ase of free �naltime, it is possible to modify the equations developed be-low to in
lude a time-s
ale parameter, as shown in [37℄.We also note that the Newton's method developed in thiswork applies to systems with no hard 
onstraints on a
tu-ator torques or workspa
e motion. Soft 
onstraints 
an bestraightforwardly added to the problem by adding penaltyfun
tions to handle motor torque limitations; again, see[37℄.Numeri
al methods for solving optimal 
ontrol problemsof the above form 
an be 
lassi�ed into dire
t and indire
tmethods. Indire
t methods attempt to solve the optimality
onditions, whi
h are expressed in terms of the maximumprin
iple [4℄, the adjoint equations, and the tranversality(boundary) 
onditions. Various relaxation and shootingmethods have been developed to solve the asso
iated two-point boundary value problem.Despite the well-do
umented su

esses of the indire
t ap-proa
h, they have been displa
ed in re
ent years by dire
tmethods. The primary reasons are that the region of 
on-vergen
e for indire
t methods is relatively small, and it isdiÆ
ult to in
orporate path inequality 
onstraints. For di-re
t methods, the state and 
ontrol variables are adjusteddire
tly to optimize the obje
tive fun
tion. In this paperwe fo
us ex
lusively on the dire
t approa
h; the reader isreferred to, e.g., [3℄, [25℄ for a survey of developments innumeri
al optimal 
ontrol sin
e the 1960's.For our approa
h, a lo
al solution to the optimal 
ontrolproblem is found by assuming that the joint 
oordinatesq(t) in (1) are parameterized by B-splines, and varyingthese parameters in the following manner. The B-spline
urve depends on the blending, or basis, fun
tions Bi(t),and the 
ontrol points P = fp1; :::; pmg; with pi 2 <n. Thejoint traje
tories then have the form q = q(t; P ), withq(t; P ) = mXi=1 Bi(t)pi (5)The 
ontrol points pi of the spline have only a lo
al e�e
ton the 
urve geometry, so given any t there will a max-imum of four nonzero Bi(t) in (5) for a 
ubi
 spline. Inaddition, the 
onvex hull property of B-splines makes themuseful for smoothing or approximating data. The fa
t that



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 3Pmi=1Bi(t) = 1 also gives the desirable property that limitson joint displa
ements 
an be imposed through limits onthe spline parameters pi. That is, if one 
onstrains pi � q;then it follows that q(t) � q 8t 2 [0; tf ℄.It should also be noted that the use of B-spline polyno-mials as the basi
 primitives in terms of whi
h our motionsare expressed is 
onsistent with re
ent results in neuro-s
ien
e: in [13℄ it was 
lini
ally observed that when humansubje
ts move their hand in a 
ir
ular motion, the traje
-tory obtained 
an be best des
ribed as a summation of\bell shaped" basis fun
tions. These fun
tions are thentranslated and s
aled to �nd the best mat
h to the humanmovement. In essen
e we a
hieve the same basi
 e�e
tthrough (5).By parametrizing the traje
tory in terms of B-splines,the original optimal 
ontrol redu
es to a parameter opti-mization problem of the formMinimizeP J(P ) = �(P; tf ) + Z tf0 L(P; t)dt (6)subje
t to q � pi � q; i = 1 : : :m (7)Here � = �(P; t); q; _q; and �q are all given fun
tions of tand P from (5) and its time-derivatives, and � be
omes anexpli
it fun
tion of the spline parameters through (1). Bya proper 
hoi
e of spline basis fun
tions at both ends of thejoint traje
tory, the path end 
onditions (3) and (4) 
an besatis�ed.By 
onverting the original problem into a parameter op-timization problem with no nonlinear 
onstraints, eÆ
ientdes
ent methods 
an then be used to minimize the 
ostfun
tion. However, to assure 
onvergen
e of these algo-rithms two 
onditions must be met: the se
ond derivativesof J(P ) must be bounded, and every approximate Hessian(found, for example, from a BFGS update [16℄) used in aquasi-Newton algorithm must remain positive de�nite withbounded 
ondition number [8℄. When one uses �nite di�er-en
e approximations for the gradient of J(P ), it is usuallynot possible to ensure a bounded 
ondition number for theapproximated Hessian; most often the result is that thealgorithms terminate prematurely [19℄.We note that the gradient and Hessian of the 
ost fun
-tional are given byrJ(P ) = Z tf0 � � (rP �) dt (8)and r2J(P ) = Z tf0 r2P � � � +rP � � rP � dt (9)The most 
omputationally diÆ
ult step in the evaluationof the gradient and Hessian is determining the derivativesof the joint torques with respe
t to the path parametersP . These evaluations require that the dynami
 equationsbe di�erentiated twi
e with respe
t to the joint variables.In a later se
tion we show how to 
ompute these deriva-tives re
ursively for the general 
lass of multibody systemsaddressed in this paper.

III. Re
ursive Dynami
sWe now present the re
ursive dynami
s formulation formultibody systems based on Lie group te
hniques. We be-gin with a brief review of serial 
hain dynami
s as presentedin [27℄, followed by the dynami
s of exa
tly a
tuated 
losed
hains as presented in [29℄. We then present a re
ursive for-mulation of the dynami
s of redundantly a
tuated 
losed
hains.A. Geometri
 PreliminariesWe begin with some geometri
 preliminaries. The Spe-
ial Eu
lidean group of rigid body motions, denoted SE(3),is represented by matri
es of the formG = � R p0 1 � 2 SE(3) (10)where R 2 SO(3) is a 3 � 3 rotation matrix, and p 2<3. Elements of SE(3) will also be denoted by the pair(R; p). The 
orresponding Lie algebra se(3) then admitsthe matrix representationg = � [!℄ v0 0 � ; [!℄ = 24 0 �!3 !2!3 0 �!1�!2 !1 0 35 (11)where v 2 <3. Elements of se(3) will alternatively be de-noted by (!; v) for notational 
onvenien
e. Later ! andv will be interpreted physi
ally as an angular velo
ity andlinear velo
ity, respe
tively. In this 
ase we refer to (!; v)as a generalized velo
ity, or twist.The exponential map exp : se(3) ! SE(3) 
an be 
om-puted by the following 
losed-form formula: if ! = !̂�,where k!̂k = 1 and � 2 R, thenexp�� [!̂℄ v0 0 ��� = � e[!̂℄� p0 1 � (12)where p = (I�+ (1� 
os�)[!̂℄ + (�� sin�)[!̂℄2)v (13)e[!̂℄� = I + sin�[!̂℄ + (1� 
os�)[!̂℄2 (14)Given an element G 2 SE(3), we also re
all the ad-joint mapping AdG : se(3) ! se(3), de�ned as AdG(g) =GgG�1. Given an element g1 2 se(3), the Lie bra
ketadg1 : se(3) ! se(3) is given by adg1(g2) = g1g2 � g2g1.The two adjoint mappings 
an also be represented in ma-trix form by AdG(g) = � R 0[p℄R R��!v� (15)adg1(g2) = �[!1℄ 0[v1℄ [!1℄��!2v2� (16)where G = (R; p) 2 SE(3) and gi = (!i; vi), i = 1; 2.The 
orresponding dual adjoint mappings Ad�G : se�(3) !
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an be represented inmatrix form asAd�G(�) = � R 0[p℄R R�T �mf � (17)ad�g(�) = �[!℄ 0[v℄ [!℄�T �mf � (18)where � 2 se�(3) has the form� = � [m℄ f0 0 � (19)with m 2 R3 ; f 2 R3 . In what follows m and f will beinterpreted physi
ally as a moment and for
e, respe
tively.In this 
ase we refer to (m; f) as a generalized for
e, orwren
h.B. Serial ChainsGiven an n-link serial 
hain, let fk�1;k 2 SE(3) be thetransformation from link frame i-1 to link frame i, Sk 2se(3) the joint twist asso
iated with joint k, Mk 2 SE(3)be the value of fk�1;k when joint qk = 0, Vk 2 se(3) thesix-dimensional generalized velo
ity of the link fkg frameexpressed in frame fkg, Fk the six-dimensional generalizedfor
e exerted by link fk-1g on link fkg expressed in framefkg, Jk the 6�6 generalized inertia matrix of link fkg, and�k the torque exerted at joint fkg.1 Jk has the followingstru
ture: Jk = � Ik �mk[rk ℄2 mk[rk℄�mk[rk℄ mkI � (20)where Ik 2 <3�3 is the rotational inertia of link fkg aboutthe 
enter of mass2, rk is the three-dimensional ve
tor fromthe frame fkg origin to the 
enter of mass,mk is the mass oflink fkg, and I is the 3�3 identity matrix. With these def-initions the inverse dynami
s 
an be 
omputed re
ursivelyas follows:� Initialization V0; _V0; Fn+1� Forward re
ursion: for k=1 to nfk�1;k = MkeSkqk (21)Vk = Adf�1k�1;kVk�1 + Sk _qk (22)_Vk = Adf�1k�1;k _Vk�1 + Sk�qk + adVkSk _qk (23)� Ba
kward re
ursion: for k=n to 1Fk = Ad�f�1k;k+1Fk+1 + Jk _Vk � ad�VkJkVk (24)�k = STk Fk (25)A re
ursive formulation of serial 
hain forward dynam-i
s based on the same geometri
 
on
epts is given in [30℄,whose details we omit for spa
e reasons.1Fn+1 is the external for
e, e.g., tool for
e, applied to link fngexpressed in frame fn+1g.2Ik is 
al
ulated with respe
t to a frame atta
hed at the 
enter ofmass, with the same orientation as frame fkg.

C. Exa
tly A
tuated Closed ChainsThe traditional approa
h to solving the inverse dynami
sof 
losed 
hains is to �rst solve the inverse dynami
s of theredu
ed system, followed by an appli
ation of D'Alembert'sPrin
iple to solve for the a
tuated joint torques of the
losed 
hain me
hanism. By adopting the Lie theoreti
framework we 
an exploit the re
ursive algorithms for theserial 
hain 
ase, and derive a similar set of re
ursive al-gorithms for exa
tly evaluating the 
losed 
hain dynami
s[29℄.
at


F
(a) a
tual system 0
=

rt


F
(b) redu
ed systemFig. 1. The redu
ed systemTo illustrate the approa
h, let us 
onsider the me
hanismof Figure 1. The motion of this me
hanism is generatedby the a
tuator at joint 1 and the external applied for
eFat. We 
an think of another identi
al me
hanism thatgenerates the same motion, but Frt = 0 and every joint isassumed a
tuated3; this is essentially the 
on
ept of the re-du
ed system. Note that the internal for
es in the redu
edsystem are di�erent from those of the a
tual system.Sin
e the a
tual system and the redu
ed system produ
ethe same motion, the work performed by ea
h system isthe same. Let _Wa and _Wr be the work done by the a
tualand redu
ed systems, respe
tively. Likewise, let �a and �rbe torque ve
tor, and qa and qr be the a
tuated joint angleve
tor of the a
tual and redu
ed systems, respe
tively. Vtis the generalized velo
ity of the tool frame. Then_Wa = �Ta _qa � F TatVt (26)_Wr = �Tr _qr = �Tra _qa + �Trp _qp (27)where qr is partitioned into qr = (qa; qp), with qp 
orre-sponding to the passive (una
tuated) joint of the a
tualsystem. �r is partitioned into �r = (�ra; �rp), with �ra thetorque at joint qa and �rp the torque at joint qp. Using thefa
t that Vt = J _q = Ja _qa + Jp _qp4 and Equation (26), weget _Wa = (�Ta � F TatJa) _qa � F TatJp _qp: (28)Sin
e _qa and _qp are independent, the following relations3Fat is the external applied for
e of the a
tual system, while Frt isthat of the redu
ed system.4J = [JaJp℄ is the Ja
obian matrix, where Ja is the Ja
obian matrixof the a
tuated joint, and Jp that of the passive joint of the a
tualsystem.



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 5hold: Fat = �J�Tp �rp (29)�a = JTa Fat + �ra (30)= �ra � (J�1p Ja)T �rp (31)Note that Jp must be nonsingular; if it is singular, theme
hanism is in a 
on�guration 
orresponding to an a
tu-ator singularity [28℄.With the above, we are now ready to des
ribe the dy-nami
s algorithm for exa
tly a
tuated 
losed 
hains. For a
losed 
hain me
hanism, Vt = 0 and Fat is the 
onstraintfor
e applied to the me
hanism so as to satisfy the 
on-straint equations. The inverse dynami
s 
an be 
omputedusing the re
ursive inverse dynami
s algorithm of the re-du
ed system as follows:� Initialization V0; _V0; Frt = 0� Forward re
ursion: for k=1 to nfk�1;k = MkeSkqk (32)Vk = Adf�1k�1;kVk�1 + Sk _qk (33)_Vk = Adf�1k�1;k _Vk�1 + Sk�qk + adVkSk _qk (34)� Ba
kward re
ursion: for k=n to 1Fr;k = Ad�f�1k;k+1Fr;k+1 + Jk _Vk � ad�VkJkVk (35)�k = STk Fr;k (36)� Solve 
onstraint for
eFa;t = �JTp �rp (37)� Ba
kward re
ursion: for k=n to 1Fa;k = Fr;k +Ad�f�1k;n+1Fa;t (38)�a;k = STk Fa;k (39)If one needs to solve only �a, one 
an use Equation (31)without performing the last ba
kward re
ursion. See [29℄for a dis
ussion of the re
ursive forward dynami
s formu-lation for exa
tly a
tuated 
losed 
hains.D. Redundantly A
tuated Closed ChainsA system is redundantly a
tuated when the number ofa
tuated joints is greater than the degrees of freedom ofthe me
hanism. In this 
ase the inverse dynami
s will ingeneral not have a unique solution. Equations (26) and (27)are still valid for the redundantly a
tuated 
ase, however.Using Vt = J _q = Ja _qa + Jp _qp, we have�rp = �JTp F
 (40)�ra = �JTa F
 + �a (41)where Fat in Equation (26) is repla
ed with F
. Therefore,F
 = �(JTp )y�rp +Null(JTp )�T (42)�a = �ra � JTa (JTp )y�rp + JTa Null(JTp )�T (43)

where � is the Lagrange multiplier, Null(�) is a null spa
ebasis, and (JTp )y = Jp(JTp Jp)�1.We now determine the relationship between the torquesof a redundantly a
tuated system and its 
orrespondingexa
tly a
tuated system. Let the a
tuated joints and 
or-responding torques of the redundantly a
tuated system beqoa and �oa, respe
tively, and the a
tuated joints and 
or-responding torques of the exa
tly a
tuated system be qeaand �ea, respe
tively. Then from D'Alembert's Prin
iple,�Toa _qoa = �Tea _qea: (44)Now let us partition qoa and �oa into qoa = (qea; qv) and�oa = (�u; �v), where qv is not a
tuated in the 
orrespond-ing exa
tly a
tuated system, and its torque is �v . From_qep = �J�1p Ja _qea, let _qv = � _qea for some �. Then�Toa _qoa = �Tu _qea + �Tv � _qea = �Tea _qea (45)from whi
h it follows that�u + �T �v = �ea (46)Note that Jp is required to be nonsingular. In the eventthat it is singular, one 
an simply 
onstru
t the 
orrespond-ing exa
tly a
tuated system in su
h a way that Jp is non-singular, by 
hoosing the appropriate set of a
tuated joints.We will use the above relation in Se
tion IV-B.IV. Differentiation of the Equations of MotionTo obtain the gradient and Hessian of the obje
tive fun
-tion, it is ne
essary to di�erentiate the equations of motionwith respe
t to the joint variables. In this se
tion we derivere
ursive algorithms to 
ompute the gradient and Hessianfor both open loop and 
losed loop systems.A. Serial ChainsLet q = q(p; t), where t 2 R and p 2 Rk . Also let S; V 2se(3), M 2 SE(3). Then the following identities 
an beestablished by a straightforward but involved 
al
ulation:��pAdeSqM = �q�padSAdeSqM (47)��pAdMeSq = �q�pAdMeSq adS (48)��pAd�eSqM = �q�pAd�eSqMad�S (49)��pAd�MeSq = �q�pad�SAd�MeSq (50)��padV = ad �V�p (51)��pad�V = ad��V�p (52)An earlier, more 
ompli
ated version of the above identitieswas also obtained in [18℄.Using these results, we 
an di�erentiate the inverse dy-nami
s of a serial 
hain with respe
t to the joint parameterve
tor p via the following algorithm:



6 IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, SEPTEMBER 2004� Initialization �V0�pi ; � _V0�pi ; �Fn+1�pi� Forward re
ursion: for k=1 to n�Vk�pi = Adf�1k�1;k �Vk�1�pi + Sk � _qk�pi � adSkVk �qk�pi (53)� _Vk�pi = Adf�1k�1;k � _Vk�1�pi + Sk ��qk�pi � adSkf�qk�pi Adf�1k�1;k _Vk�1 + �Vk�pi _qk + Vk � _qk�pi g (54)� Ba
kward re
ursion: for k=n to 1�Fk�pi = Ad�f�1k;k+1(ad��Sk+1Fk+1 �qk+1�pi + �Fk+1�pi )+Jk � _Vk�pi � ad��Vk�pi JkVk � ad�VkJk �Vk�pi (55)��k�pi = STk �Fk�pi (56)By di�erentiating the above re
ursive gradient algo-rithm, the se
ond derivatives of the dynami
s 
an in turnbe analyti
ally 
omputed via the following re
ursive algo-rithm:� Initialization �2V0�pi�pj ; �2 _V0�pi�pj ; �2Fn+1�pi�pj� Forward re
ursion: for k=1 to n�2Vk�pi�pj = Adf�1k�1;k �2Vk�1�pi�pj + Sk �2 _qk�pi�pj�adSkf�qk�pi Adf�1k�1;k �Vk�1�pj+�Vk�pi �qk�pj + Vk �2qk�pi�pj g (57)�2 _Vk�pi�pj = Adf�1k�1;k �2 _Vk�1�pi�pj + Sk �2�qk�pi�pj�adSkfAdf�1k�1;k ( _Vk�1 �2qk�pi�pj+� _Vk�1�pj �qk�pi + � _Vk�1�pi �qk�pj ) + Vk �2 _qk�pi�pj+ �2Vk�pi�pj _qk + �Vk�pi � _qk�pj + �Vk�pj � _qk�pi�adSkAdf�1k�1;k _Vk�1 �qk�pi �qk�pj g (58)

� Ba
kward re
ursion: for k=n to 1�2Fk�pi�pj = Ad�f�1k;k+1fad��Sk+1(Fk+1 �2qk+1�pi�pj+ad��Sk+1Fk+1 �qk+1�pi �qk+1�pj + �Fk+1�pj �qk+1�pi+�Fk+1�pi �qk+1�pj ) + �2Fk+1�pi�pj g+ Jk �2 _Vk�pi�pj�ad��2Vk�pi�pj JkVk � ad��Vk�pi Jk �Vk�pj�ad��Vk�pj Jk �Vk�pi � ad�VkJk �2Vk�pi�pj (59)�2�k�pi�pj = STk �2Fk�pi�pj (60)It should be noted that many of the 
omputations embed-ded in the forward and ba
kward re
ursions above needonly be evaluated on
e, thereby redu
ing the 
omputa-tional burden.B. Exa
tly A
tuated Closed ChainsRe
all that for an exa
tly a
tuated 
losed 
hain,�a = �ra � (J�1p Ja)T �rp (61)Di�erentiating Equation (61) with respe
t to p using ourearlier basi
 identities, we obtain5��a�pi = ��ra�pi � �JTa�pi J�Tp �rp � JTa �(J�Tp )�pi �rp�JTa J�Tp ��rp�pi (62)Di�erentiating again yields�2�a�pi�pj = �2�ra�pi�pj � �2JTa�pi�pj J�Tp �rp � �JTa�pi �(J�Tp )�pj �rp��JTa�pi J�Tp ��rp�pj � �JTa�pj �(J�Tp )�pi �rp�JTa �2(J�Tp )�pi�pj �rp � JTa �(J�Tp )�pi ��rp�pj��JTa�pj J�Tp ��rp�pi � JTa �(J�Tp )�pj ��rp�pi�JTa J�Tp �2�rp�pi�pj (63)C. Redundantly A
tuated Closed ChainsTo di�erentiate the equations of motion for a redun-dantly a
tuated 
losed 
hain, we 
an di�erentiate eitherEquation (43) or (44); here we 
hoose the latter, sin
e thisform is more 
onvenient for torque optimization. Supposewe want to minimize a suitably weighted torque, e.g., sup-pose � =W�oa = �Wu�uWv�v� (64)5Here we use the fa
t that �(J�Tp )�pi = �Jp �JTp�pi Jp.



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 7where W is a suitable weighting matrix. We wish to mini-mize �T � = �ToaW TW�oa (65)= �Tu Ŵu�u + �Tv Ŵv�v (66)= �Tv (�Ŵu�T + Ŵv)�v � 2�Tv �Ŵu�ea+�TeaŴu�ea (67)where Ŵu = W Tu Wu, and Ŵv = W Tv Wv ; spe
i�
ally, weseek the �u and �v that minimize �T � . This leads to anun
onstrained 
al
ulus of variations problem of the formminq;� Z tft0 L(q; _q; �q; �) dt (68)where � = �v and L = �T � in our formulation. Noting thatq and � are independent, the �rst-order ne
essary 
ondi-tions for optimality are�L�q � ddt �L� _q + d2dt2 �L��q = 0 (69)�L�� = 0: (70)In parti
ular, the last 
ondition leads to��T ���v = 2(�Ŵu�T + Ŵv)�v � 2�Ŵu�ea = 0 (71)from whi
h we obtain�v = (�Ŵu�T + Ŵv)�1�Ŵu�ea (72)and �u = (I � �T (�Ŵu�T + Ŵv)�1�Ŵu)�ea: (73)The derivative of the torque with respe
t to pi is���pi =W ��oa�pi =Wu ��u�pi +Wv ��v�pi : (74)Let ' = (�Ŵu�T + Ŵv). Then we obtain��v�pi = '�1(�2 ���pi Ŵu�T'�1�Ŵu�ea+ ���pi Ŵu�ea + �Ŵu ��ea�pi ) (75)��u�pi = ��ea�pi � ��T�pi �v � �T ��v�pi : (76)

Di�erentiating the above equations on
e again, we get�2�v�pi�pj = '�1(� �'�pi ��v�pj � 2 �2��pi�pj Ŵu�T'�1�Ŵu�ea�4 ���pj Ŵu ���pi T'�1�Ŵu�ea+2 ���pj Ŵu�T'�1 ���pi'�1�Ŵu�ea�2 ���pj Ŵu ���pi T'�1�Ŵu ��ea�pi+ �2��pi�pj Ŵu�ea + ���pj Ŵu ��ea�pi+ ���pi Ŵu ��ea�pj + �Ŵu �2�ea�pi�pj ) (77)�2�u�pi�pj = �2�ea�pi�pj � �2�T�pi�pj �v � ��T�pj ��v�pi� ���pi T ��v�pj � �T �2�v�pi�pj (78)The above formulas 
an be used to analyti
ally 
omputethe gradient and Hessian for the 
lass of obje
tive fun
tions
onsidered in this paper.V. Algorithm for Generating Optimal MotionsIn this se
tion, we present the general iterative pro
edurefor 
omputing optimal motions of the various 
lasses ofkinemati
 
hains. The algorithm is expressed in suÆ
ientlygeneral form so as to allow for di�erent (un
onstrained)optimization algorithms, although the primary ones wewill be interested in are steepest des
ent and Newton-typemethods.The algorithm below des
ribes the motion optimizationpro
edure for a serial 
hain me
hanism.� Given: Initial and �nal values of the joint angle dis-pla
ement, velo
ity, and a

eleration.� Step 1: Choose the number of 
ontrol points and theorder of the B-spline 
urve.� Step 2: Make an initial assumption of the joint anglepro�les.� Step 3: For time t = t0 to tf :- Compute the spline fun
tion to get the status of joint an-gle. (Equation (5) )- Solve the inverse dynami
s to determine the torque.(Equation (25))- Solve for the gradient and Hessian. (Equations (56) and(60))� Step 4: Compute the obje
tive fun
tion, gradient, andHessian. (Equations (6), (8) and (9))� Step 5: Che
k 
onvergen
e. If yes, terminate. If no, linesear
h for the next point and go to step 3.We next present the algorithm for generating optimalmotions of a redundantly a
tuated 
losed 
hain; exa
tlya
tuated 
losed 
hains 
an be 
onsidered as a spe
ial 
aseof this general 
ase.� Given: Initial and �nal values of the joint angle dis-pla
ement, velo
ity, and a

eleration for an independent
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ontrol points and theorder of the B-spline 
urve.� Step 2: Make an initial assumption of the kinemati
allyindependent joint angle pro�les.� Step 3: For time t = t0 to tf :- Compute the spline fun
tion to get the status of the jointangles. (Equation (5) )- Solve for the remaining joint angle displa
ements, velo
-ities, and a

elerations.- Solve for the inverse dynami
s, gradient, and Hessian ofthe redu
ed system. (Equations (25), (56), and (60))- Solve the inverse dynami
s to determine the torque.(Equations (72) and (73))- Solve for the gradient and Hessian of the torque. (Equa-tions (75), (76), (77), and (78))� Step 4: Compute the obje
tive fun
tion, gradient andHessian. (Equations (6), (8) and (9))� Step 5: Che
k 
onvergen
e. If yes, terminate. If no, linesear
h for the next point and go to step 3.Kinemati
 
hains 
ontaining 
lose loops must satisfy aset of loop-
losure 
onstraint equations, and it would seemnatural to attempt to apply a 
onstrained optimization pro-
edure rather than solving the 
onstraint equations at ea
hiteration. However, for the 
lass of me
hanisms of interestto us, the passive joint values 
an in general be determinedfrom the values of the a
tuated joint values without toomu
h diÆ
ulty|in this regard there exist a number of pro-
edures (i.e., the Paden-Kahan subproblems|see [22℄) forsolving in 
losed form the inverse kinemati
s of a large 
lassof serial 
hains, as well as eÆ
ient and reliable numeri
almethods. In this 
ase it is often simpler and more eÆ
ientto dire
tly solve the 
onstraint equations, and apply theun
onstrained optimization methods above.VI. Case StudiesIn this se
tion we present 
ase studies of optimal mo-tions generated for a number of representative kinemati

hains. All the simulations were performed on a PentiumII 392MHz 
omputer, and any performan
e statisti
s givenare with respe
t to this 
omputer spe
i�
ation.A. Two-Link Open ChainWe �rst 
onsider the minimum torque lifting motion fora two-link planar open 
hain in the presen
e of gravity.The motion was obtained in 13 iterations, with a stopping
riterion of kgkk < 10�2, and took 1.1 se
onds6. The �nalvalue of the obje
tive fun
tion was 314.069. Nine 
ontrolpoints were used for ea
h joint, together with a third-order
urve.To evaluate the performan
e of the modi�ed Newton'salgorithm, we optimize the motion using both steepest de-s
ent and the BFGS quasi-Newton method. In the 
aseof steepest des
ent, the number of iterations was for
efullyterminated after 229 after the algorithm failed to meet the6Using the norm of the gradient normalized with respe
t to theobje
tive fun
tion value does not signi�
antly alter the 
onvergen
ebehavior in this or any of the other examples

stopping 
riterion. The �nal value of the obje
tive fun
-tion was 314.069. For the BFGS quasi-Newton method, thealgorithm was for
efully terminated after 45 iterations|
onvergen
e was extremely slow near the solution. Thetotal elapsed time was 1.27 se
onds, and the �nal value ofthe obje
tive fun
tion 314.069. The BFGS method on theother hand approa
hed the vi
inity of the solution in theshortest time among the three methods.B. Exa
tly A
tuated Closed Chain
Joint 2�


Joint 3�


Joint 1�


L1


L2


L3


L4


L5


Fig. 2. An exa
tly a
tuated 
losed loop manipulator.We now 
onsider the exa
tly a
tuated 
losed 
hain ofFigure 2. Joints 1, 2, and 3 are a
tuated, where joint 2rotates both L2 and L4 together and joint 3, lying 
oax-ially with joint 2, rotates only L4. The a
tuated jointangles in the initial pose are given by (�30Æ;�30Æ; 120Æ),while in the �nal pose the angles are (30Æ; 10Æ; 70Æ). Weseek the minimum torque motion su
h that the manipula-tor moves between two poses symmetri
ally situated aboutthe workspa
e in exa
tly one se
ond. For our test 
ase,the Modi�ed Newton's method 
onverged after seven iter-ations, with a total 
omputation time of 6.94 se
onds.
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Fig. 3. Comparison of optimization methods.The 
onvergen
e speed and number of iterations are 
om-pared for the steepest des
ent, Newton's method, and theBFGS quasi-Newton method. Figure 3 shows the num-ber of iterations for ea
h method, while Table I shows the
omputation time of ea
h optimization method. As evi-dent from the �gure, the steepest des
ent method failedto 
onverge due to ill-
onditioning, while both the BFGS
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onsumed for ea
hmethod.Algorithm Num. iter. time (se
)Steepest Des
ent 200+ 58.184Modified Newton's 7 6.94BFGS Quasi-Newton 18 4.086quasi-Newton method and the modi�ed Newton's methodshowed good 
onvergen
e. Although the number of itera-tions for the modi�ed Newton's method is smaller than thatfor the BFGS quasi-Newton method, for this example theoverall 
omputation time is slightly greater due to the 
om-putation of the analyti
 Hessian at ea
h step. In general,for 
omplex examples we have found that the total 
ompu-tation time in
reases approximately linearly with the num-ber of parameters. The reason for this is that for Newton'smethod, the asymptoti
 
onvergen
e rate is quadrati
 andalso independent of the number of parameters [16℄. Hen
ethe 
omputation time is dominated by the time needed to
ompute the obje
tive fun
tion, gradient, and Hessian, allof whi
h in
rease linearly with the number of parameters.C. Redundantly A
tuated Closed Chain: the Rower
u�
(a) Human on rowingma
hine. (b) Correspondingme
hanism.Fig. 4. A s
hemati
 pi
ture of rowing.As our �nal example, we 
onsider the minimum torquerowing motion of a human 
onsisting of two 
losed loops.Figure 4 (b) shows the planar kinemati
 
hain used tomodel the human. The me
hanism has �ve kinemati
 de-grees of freedom and seven a
tuated joints. In the �gure,the 
ir
les represent rotational joints and re
tangles repre-sent prismati
 joints; �lled-in 
ir
les imply that the jointis a
tuated. The prismati
 joints and the base link are notshown expli
itly in the �gure for visualization purposes.A 40 newton-meter torque is applied 
lo
kwise at thejoint to whi
h the oar is atta
hed. Table II shows themasses and rotational inertias of the various links, obtainedfrom [23℄ to 
losely approximate the a
tual values for atypi
al human. The top row of Figure 5 depi
ts the initialmotion, obtained by linear interpolation of the joint val-ues between the initial and �nal poses, while the optimizedmotion is shown in the bottom row. It is interesting to

TABLE IIMasses and moments of inertia for the human model.Link Mass(kg) Moment of inertia(kgm2)Pelvis 16.61 (0.23, 0.18, 0.16)Trunk 29.27 (0.73, 0.63, 0.32)Arm 2.97 (0.025, 0.025, 0.005)Forearm 1.21 (0.005, 0.0054, 0.0012)Thigh 8.35 (0.15, 0.16, 0.025)Shank 4.16 (0.055, 0.056, 0.007)note the similarity between the optimized motion and thea
tual rowing motion exerted by a human.For this example the optimized motion was obtained af-ter 38 iterations using the BFGS quasi-Newton method,with a total 
omputation time of 54.43 se
onds. Ten 
ontrolpoints were used for ea
h joint traje
tory, with a B-spline oforder three for the interpolating 
urves. The same optimalmotion was obtained with the modi�ed Newton algorithm,but with a longer 
omputation time. Our experien
e simu-lating a wide array of multibody systems indi
ates that, ingeneral, the BFGS quasi-Newton method requires between10-50% less 
omputation time than the modi�ed Newtonmethod. VII. Con
lusionIn this paper we have presented an optimization-basedmethodology for motor learning that emulates the low-level
apabilities of human motor 
oordination and learning.The systems we address in
lude 
hains 
ontaining multi-ple 
losed loops and an arbitrary number of a
tuators; thisin
ludes antagonisti
, redundantly a
tuated systems likethe human body.Previous 
lassi
al optimization-based approa
hes to mo-tor learning were limited in their e�e
tiveness to kinemati-
ally simple, low degree-of-freedom systems; for even mod-erately 
omplex systems, these algorithms typi
ally led toill-
onditioning, instability, and poor 
onvergen
e behav-ior, be
ause of their inability to deal with the 
omplexityof the nonlinear dynami
s, and their relian
e on approxi-mated gradient and Hessian information.In this paper we have shown that by appealing to te
h-niques from the theory of Lie groups, both the equationsof motion, and gradient and Hessian information, 
an beexa
tly and re
ursively 
omputed for even 
ompli
ated an-tagonisti
 multibody systems. The resulting algorithmsare still 
omputation-intensive, but are O(n) with respe
tto the number of rigid bodies 
omprising the system. Ex-amples of minimum e�ort motions for various multibodysystems demonstrate that these algorithms 
an serve as abasis for a robust, 
omputationally e�e
tive, model-basedmotor learning 
apability.Our initial results suggest a number of topi
s for furtherstudy. First, as shown from our 
ase studies, the number of
ontrol points and the order of the 
urve play an importantrole in both the 
omputational eÆ
ien
y and �nal shape ofthe optimized motions. From this point of view, B-spline
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Fig.5.Initialandoptimizedmotionsforrowing.

wavelets are also worth 
onsidering in that the traje
tory isrepresented hierar
hi
ally instead of in terms of a B-splinebasis [36℄. Other obje
tive fun
tions, e.g., minimum-timemotions, also deserve further attention.AppendixI. Differentiation of the Constraint Ja
obianWe provide formulas for obtaining the derivatives of the
onstraint Ja
obian (note that the Ja
obian in spa
e frame
oordinates is used throughout). LetJ = [J1 � � � Jn℄ (79)Ji = Adf0;iSi: (80)Then �Jl�qi = (JiJl � JlJi = [Ji; Jl℄ if i < l;JlJi � JlJi = 0 if i � l: (81)��qi (�Jl�qj ) = 8>>>>>>>><>>>>>>>>:
[adJiJj ; Jl℄ + [Jj ; adJiJl℄ =adadJiJjJl + adJjadJiJlif i < j < l;[Jj ; adJiJl℄ = adJjadJiJlif j � i < l;0 elsewhere: (82)_Ji = i�1Xj=1adJjJi _qj (83)�Jl�pj = l�1Xk=1 �qk�pj adJkJl (84)�2Jl�pi�pj = l�1Xk=1f �2qk�pi�pj adJkJl+�qk�pj l�1Xm=1 �qm�pi (adJkadJmJl)+�qk�pj k�1Xm=1 �qm�pi (adadJmJkJl)g (85)�2 _Jl�pi�pj = l�1Xk=1f(ad �2Jk�pi�pj Jl + ad �Jk�pj �Jl�pi + ad �Jk�pi �Jl�pj+adJk �2Jl�pi�pj ) _qk + (ad �Jk�pj Jl + adJk �Jl�pj )� _qk�pi+(ad �Jk�pi Jl + adJk �Jl�pi )� _qk�pj+adJkJl �2 _qk�pi�pj g: (86)Referen
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