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Newton-Type Algorithms for Dynamics-Based

Robot Movement Optimization
Sung-Hee Lee, Junggon Kim, F.C. Park, Munsang Kim, and J.E. Bobrow

Abstract— This article describes Newton and quasi-
Newton optimization algorithms for dynamics-based robot
movement generation. The robots that we consider are
modeled as rigid multibody systems containing multiple
closed loops, active and passive joints, and redundant actua-
tors and sensors. While one can, in principle, always derive
in analytic form the equations of motion for such systems,
the ensuing complexity—both numeric and symbolic—of
the equations makes classical optimization-based movement
generation schemes impractical for all but the simplest
of systems. In particular, numerically approximating the
gradient and Hessian often leads to ill-conditioning and
poor convergence behavior. We show in this article that
by extending—to the general class of systems described
above—a Lie theoretic formulation of the equations of mo-
tion originally developed for serial chains, it is possible to
recursively evaluate the dynamic equations, the analytic gra-
dient, and even the Hessian for a number of physically plau-
sible objective functions. We show through several case
studies that with exact gradient and Hessian information,
descent-based optimization methods can be forged into an
effective and reliable tool for generating physically natural
robot movements.

Keywords— Movement optimization, robot dynamics,
Newton’s method, closed chain, redundant actuation, multi-
body system dynamics.

I. INTRODUCTION

MONG the many innate physical abilities of humans,

motor control is the skill that is most often taken for
granted, as it seems to require very little conscious effort on
our part. Only when a particular motor skill is impaired
or lost does one then begin to fully appreciate the diffi-
culty of motor control. It comes as no surprise that these
exact same difficulties are encountered, indeed even mag-
nified, when attempting to endow robots with a movement
generation capability like that of humans.

The broad aim of this paper is to emulate the low-
level capabilities of human motor coordination and learning
within the framework of optimal control theory. Our ap-
proach is based on the simple observation that, in nearly
all of the motor learning scenarios that we have observed,
some form of optimization with respect to a physical crite-
rion is taking place.

There is ample biological evidence to justify an
optimization-based approach to movement generation. In
the literature one can find many optimal control-based
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studies of various human motions, e.g., maximum-height
jumping [24], voluntary arm movements [15], maintaining
postural balance [14], minimum-time running and swim-
ming [17], even wheelchair propelling [35]. Besides some of
the more obvious optimization criteria like minimum en-
ergy or control effort, strategies that involve minimizing
the derivative of acceleration (or jerk) [7], as well as mus-
cle or metabolic energy costs [1], have also been examined
in the context of specific arm motions. Models for human
motor learning and control that take into account both the
muscle dynamics and features of the neural system have
been proposed in, e.g., [33], [11], [9].

Some researchers have also presented biological evidence
suggesting that the nervous system implicitly performs in-
verse dynamics to generate feedforward motor commands
[32], particularly for fast motions. Previous research also
shows that it is possible to identify accurate internal mod-
els from movement data, and that such strategies can be
successfully implemented in robots (see [2] and the refer-
ences cited therein). Aproaches to motor coordination and
learning based on equilibrium and hierarchical approaches
inspired by biological systems [21], [5], and dynamical sys-
tems theory [10] have also been presented.

From an engineering perspective an optimization-based
approach to movement generation usually strikes one as
the first reasonable thing to try. The reason that such
approaches have been largely unsuccessful, it seems, is
that the complexity of the dynamic equations inevitably
lead to intractable optimization problems. Indeed, the in-
tractability of the optimization seems at least partly—if not
largely—responsible for the recent flurry of attention given
to, e.g., neural networks, genetic algorithms, and other evo-
lutionary optimization approaches to motor learning (see,
e.9., [34], [26], [31)).

One of the arguments put forth in this paper is that
movement generation based on dynamic models and classi-
cal descent-type optimization methods is indeed a compu-
tationally feasible paradigm. In addition to our work, [6]
have also demonstrated the feasibility of this approach to
generate motions for tree structure-like animated charac-
ters, by a suitable choice of physics-based constraints and
objective function. Stable open-loop motions for perform-
ing forward somersaults have also been obtained via nu-
merical solution of an optimal control problem in [20].

Aside from the complexity of the nonlinear dynamics,
another reason classical descent methods, despite their re-
liability (indeed, in many cases these algorithms are the
only ones that can guarantee local optimality and conver-
gence), are bypassed in many of today’s motion learning
schemes is their reliance on gradient and Hessian informa-
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tion. Although in principle one can numerically approxi-
mate these quantities, for problems involving even moder-
ately complex multibody systems, approximated gradients
and Hessians more often than not lead to ill-conditioning,
instability, and poor convergence behavior, not to mention
a significant increase in computation.

One of the primary contributions of this paper is that by
appealing to techniques from the theory of Lie groups, it is
possible to formulate the equations of motion of even com-
plicated antagonistic multibody systems like the human
body in such a way as to render the optimization problem
tractable. In many cases the optimized motions can even
be obtained quite efficiently and in a numerically robust
way. The key lies in the ability to recursively evaluate the
nonlinear dynamics, and also to recursively compute exact
analytic gradients and Hessians without resorting to nu-
merical approximations. The resulting algorithms are still
computation-intensive by today’s standards, but are O(n)
with respect to the number of rigid bodies comprising the
system, and perhaps most important of all, robust.

We begin by describing the dynamic modeling and op-
timization algorithms developed using techniques from Lie
group theory. Some of the preliminary results specific to
serial chains have been reported in [27], including the re-
cursive computation of analytic gradients for serial chains
[18], [12]. In this paper we considerably enlarge the class of
candidate mechanisms, to chains containing multiple closed
loops and an arbitrary number of actuators; this includes
antagonistic, redundantly actuated systems like the human
body. We also develop general recursive algorithms for ob-
taining higher-order derivatives of the dynamics for this
class of chains.

Based on these new algorithms, recursive Newton type
optimization algorithms are then developed for generat-
ing optimal movements. As is well-known, Newton meth-
ods have quadratic convergence properties, and offer supe-
rior performance over purely gradient-based optimization
methods like steepest descent. Examples of minimum ef-
fort motions for various multibody systems are provided
to demonstrate that these algorithms can serve as a basis
for generating efficient, physically natural movements in a
robust, computationally effective manner.

II. PROBLEM STATEMENT

The equations of motion for our systems, which are mod-
eled as a set of coupled rigid bodies, are of the form
M(q)i+C(g.4)d+ N(g.4) =7 (1)
where M (q) € R"*" is the mass matrix, C(q,q) € R**" is
the Coriolis matrix, and N(q,¢) € R" includes gravity and
other forces (for the moment we consider only holonomic
systems in which the equations of motion are expressed
in independent coordinates). One should not be deceived
by the apparent simplicity of Equation (1); for even kine-
matically straightforward structures like standard six-axis
industrial robots, analytic expressions for M(q), C(q,q),
and N(q) are extremely complicated.

We will be interested in minimizing cost functionals of
the form

J(r) = B(q.dtg) + / "Laanyd @)

subject to Equation (1) and the boundary conditions

4(0) =0 (3)
q(ty) =0 (4)

where for some of our examples, ® penalizes deviations
from the desired final condition. For most of our examples,
the effort L = 1||7%||? captures the desire to minimize the
exerted joint torques. The final time ¢; may be either free
or fixed in our formulation; for the examples presented in
this paper ty is assumed fixed. For the case of free final
time, it is possible to modify the equations developed be-
low to include a time-scale parameter, as shown in [37].
We also note that the Newton’s method developed in this
work applies to systems with no hard constraints on actu-
ator torques or workspace motion. Soft constraints can be
straightforwardly added to the problem by adding penalty
functions to handle motor torque limitations; again, see
[37].

Numerical methods for solving optimal control problems
of the above form can be classified into direct and indirect
methods. Indirect methods attempt to solve the optimality
conditions, which are expressed in terms of the maximum
principle [4], the adjoint equations, and the tranversality
(boundary) conditions. Various relaxation and shooting
methods have been developed to solve the associated two-
point boundary value problem.

Despite the well-documented successes of the indirect ap-
proach, they have been displaced in recent years by direct
methods. The primary reasons are that the region of con-
vergence for indirect methods is relatively small, and it is
difficult to incorporate path inequality constraints. For di-
rect methods, the state and control variables are adjusted
directly to optimize the objective function. In this paper
we focus exclusively on the direct approach; the reader is
referred to, e.g., [3], [25] for a survey of developments in
numerical optimal control since the 1960’s.

For our approach, a local solution to the optimal control
problem is found by assuming that the joint coordinates
q(t) in (1) are parameterized by B-splines, and varying
these parameters in the following manner. The B-spline
curve depends on the blending, or basis, functions B;(t),
and the control points P = {p1, ..., pm }, with p; € R". The
joint trajectories then have the form ¢ = ¢(¢, P), with

q(0) = qo,
q(ty) = gy,

m

q(t,P) =Y _ Bi(t)p:

i=1

(5)

The control points p; of the spline have only a local effect
on the curve geometry, so given any ¢ there will a max-
imum of four nonzero B;(t) in (5) for a cubic spline. In
addition, the convex hull property of B-splines makes them
useful for smoothing or approximating data. The fact that
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S, Bi(t) = 1 also gives the desirable property that limits
on joint displacements can be imposed through limits on
the spline parameters p;. That is, if one constrains p; < g,
then it follows that ¢(t) < g V¢ € [0,ts].

It should also be noted that the use of B-spline polyno-
mials as the basic primitives in terms of which our motions
are expressed is consistent with recent results in neuro-
science: in [13] it was clinically observed that when human
subjects move their hand in a circular motion, the trajec-
tory obtained can be best described as a summation of
“bell shaped” basis functions. These functions are then
translated and scaled to find the best match to the human
movement. In essence we achieve the same basic effect
through (5).

By parametrizing the trajectory in terms of B-splines,
the original optimal control reduces to a parameter opti-
mization problem of the form

e e ty
Mimimie Py = a(Poag) + / L(P)dt (6)
0
subject to q<pi<q, i=1...m (7)

Here 7 = 7(P,t); ¢,q, and § are all given functions of ¢
and P from (5) and its time-derivatives, and 7 becomes an
explicit function of the spline parameters through (1). By
a proper choice of spline basis functions at both ends of the
joint trajectory, the path end conditions (3) and (4) can be
satisfied.

By converting the original problem into a parameter op-
timization problem with no nonlinear constraints, efficient
descent methods can then be used to minimize the cost
function. However, to assure convergence of these algo-
rithms two conditions must be met: the second derivatives
of J(P) must be bounded, and every approximate Hessian
(found, for example, from a BFGS update [16]) used in a
quasi-Newton algorithm must remain positive definite with
bounded condition number [8]. When one uses finite differ-
ence approximations for the gradient of J(P), it is usually
not possible to ensure a bounded condition number for the
approximated Hessian; most often the result is that the
algorithms terminate prematurely [19].

We note that the gradient and Hessian of the cost func-
tional are given by

VJ(P) = /0 (Ve (8)

and .
f
V2J(P) = / Ve 7+ Vpr-Vprdt (9)
0

The most computationally difficult step in the evaluation
of the gradient and Hessian is determining the derivatives
of the joint torques with respect to the path parameters
P. These evaluations require that the dynamic equations
be differentiated twice with respect to the joint variables.
In a later section we show how to compute these deriva-
tives recursively for the general class of multibody systems
addressed in this paper.

III. RECURSIVE DYNAMICS

We now present the recursive dynamics formulation for
multibody systems based on Lie group techniques. We be-
gin with a brief review of serial chain dynamics as presented
in [27], followed by the dynamics of exactly actuated closed
chains as presented in [29]. We then present a recursive for-
mulation of the dynamics of redundantly actuated closed
chains.

A. Geometric Preliminaries

We begin with some geometric preliminaries. The Spe-
cial Euclidean group of rigid body motions, denoted SE(3),
is represented by matrices of the form

_| R p
6= o

where R € SO(3) is a 3 x 3 rotation matrix, and p €
3. Elements of SE(3) will also be denoted by the pair
(R,p). The corresponding Lie algebra se(3) then admits
the matrix representation

} € SE(3) (10)

=B 0] _az :ff —231 ()

where v € R3. Elements of se(3) will alternatively be de-
noted by (w,v) for notational convenience. Later w and
v will be interpreted physically as an angular velocity and
linear velocity, respectively. In this case we refer to (w,v)
as a generalized velocity, or twist.

The exponential map exp : se(3) — SE(3) can be com-
puted by the following closed-form formula: if w = ©¢,
where [|©|| =1 and ¢ € R, then

@] wv _ el@le
o([@ ][0 1]
where
p=(I¢+(1-cosd)@] + (¢ —sing)[@]*)v  (13)
el = T 4 sin ¢[w] 4 (1 — cos ¢)[@]? (14)

Given an element G € SE(3), we also recall the ad-
joint mapping Adg : se(3) — se(3), defined as Adg(g) =
GgG~'. Given an element g; € se(3), the Lie bracket
adg, : se(3) — se(3) is given by ady, (92) = g192 — g201.
The two adjoint mappings can also be represented in ma-
trix form by

adco) = i 7 (2) 19
o=l 0 () 0o

where G = (R,p) € SE(3) and ¢; = (w;,v), 1 = 1,2.

The corresponding dual adjoint mappings Adg, : se*(3) —
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se*(3) and ad, : se*(3) — se*(3) can be represented in
matrix form as

Ade ) = |t 3 ' () (1)
= [ 01" (%) 19

where 7 € se*(3) has the form
o=t 3] (19

with m € R, f € R®. In what follows m and f will be
interpreted physically as a moment and force, respectively.
In this case we refer to (m, f) as a generalized force, or
wrench.

B. Serial Chains

Given an n-link serial chain, let fy_1 € SE(3) be the
transformation from link frame i-1 to link frame i, Sy €
se(3) the joint twist associated with joint k, My € SE(3)
be the value of fi_1 when joint g, = 0, Vi € se(3) the
six-dimensional generalized velocity of the link {k} frame
expressed in frame {k}, F} the six-dimensional generalized
force exerted by link {k-1} on link {k} expressed in frame
{k}, Ji the 6 x 6 generalized inertia matrix of link {k}, and
7 the torque exerted at joint {k}.! Ji has the following
structure:

I — my[rg]?
—mk[rk]

mp [’I‘k]

Jk - mkI

(20)
where I}, € R3*? is the rotational inertia of link {k} about
the center of mass?, ry, is the three-dimensional vector from
the frame {k} origin to the center of mass, my, is the mass of
link {k}, and I is the 3 x 3 identity matrix. With these def-
initions the inverse dynamics can be computed recursively
as follows:

o Initialization

VO: VO) Fn+1
e« Forward recursion: for k=1 to n
fk—l,k = Mkesqu (21)
Vi = Adf—l Vi1 + Skqx (22)
k—1,k
Vk = Adfk—_l1 ka—l + Sk + ady, Skqx (23)
« Backward recursion: for k=n to 1
Fr = Ady Fipo + 3V —adi, Vi (24)
k41
Tk = Sng (25)

A recursive formulation of serial chain forward dynam-
ics based on the same geometric concepts is given in [30],
whose details we omit for space reasons.

1Fn+1 is the external force, e.g., tool force, applied to link {n}
expressed in frame {n+1}.

2], is calculated with respect to a frame attached at the center of
mass, with the same orientation as frame {k}.

C. Ezactly Actuated Closed Chains

The traditional approach to solving the inverse dynamics
of closed chains is to first solve the inverse dynamics of the
reduced system, followed by an application of D’Alembert’s
Principle to solve for the actuated joint torques of the
closed chain mechanism. By adopting the Lie theoretic
framework we can exploit the recursive algorithms for the
serial chain case, and derive a similar set of recursive al-
gorithms for exactly evaluating the closed chain dynamics

[29].
Q . /

(a) actual system

Frtzo/

(b) reduced system

Fig. 1. The reduced system

To illustrate the approach, let us consider the mechanism
of Figure 1. The motion of this mechanism is generated
by the actuator at joint 1 and the external applied force
F,;. We can think of another identical mechanism that
generates the same motion, but F;; = 0 and every joint is
assumed actuated?; this is essentially the concept of the re-
duced system. Note that the internal forces in the reduced
system are different from those of the actual system.

Since the actual system and the reduced system produce
the same motion, the work performed by each system is
the same. Let W, and W, be the work done by the actual
and reduced systems, respectively. Likewise, let 7, and 7,
be torque vector, and ¢, and ¢, be the actuated joint angle
vector of the actual and reduced systems, respectively. V;
is the generalized velocity of the tool frame. Then

Wa = TZ‘ja

: T. T . T .
WT’:TT qT: raqa+7-rpqp

- F3Vi

where ¢, is partitioned into ¢, = (ga,qp), With g, corre-
sponding to the passive (unactuated) joint of the actual
system. 7, is partitioned into 7, = (Tyq, Trp), With 7., the
torque at joint ¢, and 7, the torque at joint g,. Using the
fact that V; = J¢ = Juga + Jpg,* and Equation (26), we
get

Wa = (Tg_Fg;Ja)q.a _ng‘]p‘jp' (28)

Since ¢, and ¢, are independent, the following relations

3F,¢ is the external applied force of the actual system, while F; is
that of the reduced system.

4J = [Jq Jp] is the Jacobian matrix, where J, is the Jacobian matrix
of the actuated joint, and .J, that of the passive joint of the actual
system.
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hold:

Fat = _J;TTrp (29)
Ta = JgFat + Tra (30)
=Tra — (J, ' o) 10y (31)

Note that .J, must be nonsingular; if it is singular, the
mechanism is in a configuration corresponding to an actu-
ator singularity [28].

With the above, we are now ready to describe the dy-
namics algorithm for exactly actuated closed chains. For a
closed chain mechanism, V; = 0 and F,; is the constraint
force applied to the mechanism so as to satisfy the con-
straint equations. The inverse dynamics can be computed
using the recursive inverse dynamics algorithm of the re-
duced system as follows:

o Initialization

%: VO: Frt =0
¢ Forward recursion: for k=1 to n
fioik = Me (32)
Vi = Adf—l Vi—1 + Skdx (33)
k—1,k
Vk = Adf’:1 ka,l + Sk + adv,c Sk (34)
« Backward recursion: for k=n to 1
Frp = Adjo Fope + JiVe —adi Ve (35)
kok+1
m = SPF. (36)
e Solve constraint force
Foy=—J 1 (37)
« Backward recursion: for k=n to 1
Fa7k = Fr,k + Ad;_l Fa,t (38)
k,n+1
Tak = SyFax (39)
If one needs to solve only 7,, one can use Equation (31)

without performing the last backward recursion. See [29]
for a discussion of the recursive forward dynamics formu-
lation for exactly actuated closed chains.

D. Redundantly Actuated Closed Chains

A gystem is redundantly actuated when the number of
actuated joints is greater than the degrees of freedom of
the mechanism. In this case the inverse dynamics will in
general not have a unique solution. Equations (26) and (27)
are still valid for the redundantly actuated case, however.
Using V; = J¢ = Juq4a + Jpdp, we have

T
Trp = —J, Fe

—JIF. + 14

(40)
Tra = (41)
where F,; in Equation (26) is replaced with F.. Therefore,

F.=—(JO)7, + Null(JF)AT (42)
— JT (I e + JINull(JDAT (43)

Ta = Tra

where A is the Lagrange multiplier, Null(-) is a null space
basis, and (J] ) = J,(JT.J,) "

We now determine the relationship between the torques
of a redundantly actuated system and its corresponding
exactly actuated system. Let the actuated joints and cor-
responding torques of the redundantly actuated system be
Qoo and 7,4, respectively, and the actuated joints and cor-
responding torques of the exactly actuated system be g,
and 7.4, respectively. Then from D’Alembert’s Principle,

Tg;‘joa = Tg;q.ea- (44)
Now let us partition ¢,, and 7,4 int0 ¢oa = (Gea, qn) and
Toa = (Tu, Ty), Where ¢, is not actuated in the correspond-
ing exactly actuated system, and its torque is 7,. From
Gep = —Jp’lJaqm, let ¢, = Pgeq for some ¢. Then

T(z;q.oa = Tg(jea + Tg(bq.ea = Tej;q.ea (45)
from which it follows that
Tu+ ¢ Ty = Teq (46)

Note that .J, is required to be nonsingular. In the event
that it is singular, one can simply construct the correspond-
ing exactly actuated system in such a way that .J, is non-
singular, by choosing the appropriate set of actuated joints.
We will use the above relation in Section IV-B.

IV. DIFFERENTIATION OF THE EQUATIONS OF MOTION

To obtain the gradient and Hessian of the objective func-
tion, it is necessary to differentiate the equations of motion
with respect to the joint variables. In this section we derive
recursive algorithms to compute the gradient and Hessian
for both open loop and closed loop systems.

A. Serial Chains

Let ¢ = q(p,t), where t € R and p € R*. Also let S,V €
se(3), M € SE(3). Then the following identities can be
established by a straightforward but involved calculation:

(%Adequ = g—ZadSAdESqM (47)
a%AdMeSq = g—ZAdMesqads (48)
(%Ad;fqu _ g—ZAd;quadg (49)
%Ad}*wesq = g—ZadgAd}*\,,eSq (50)
(%adv = adgy (51)
a%ad*v = adjy (52)

An earlier, more complicated version of the above identities
was also obtained in [18].

Using these results, we can differentiate the inverse dy-
namics of a serial chain with respect to the joint parameter
vector p via the following algorithm:
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¢ Initialization

Vo OVy OFn4q
Opi’ Op;” Op;

e« Forward recursion: for k=1 to n

Z‘;’: = Ad 61(;;1 +skgi’: adskang (53)
AU s el
gi’:Ad o T ZV’“ a (54)
¢ Backward recursion: for k=n to 1
‘?92“ - Ad;kHl(ad*,SHleHag’;l ag;jl)
+Jkg‘;” ‘ZZ’: T Vi — ad*vkjkg—?: (55)
.t

By differentiating the above recursive gradient algo-
rithm, the second derivatives of the dynamics can in turn
be analytically computed via the following recursive algo-
rithm:

¢ Initialization

?Vy 02V 02F,4q
OpiOp;’ Op;Op;’ Op;Op,

¢ Forward recursion: for k=1 to n

82Vk _ 82Vk_1 82qk
Opidp; —  Jeiedpidp; T Opidp
Oqr 0Vi—1
adsk{apl oo Ip;
OV Oqi % q
- dpi Op; k apiapj} (57)
PVe  _ g PV 02
dpidp; v Opidp; " Opid;
—ads, {Ad; 1 (Ve i
Y Fpop;
OVi—1 Oqr  OVis %) k%
Op; Opi Opi Op; OpiOp;
8%V, OVy, 0gr ~ OVy Oy
ap:op; ™ " p; Op;  Op; Opi
~ads, Ad;1 Vi 122’: glq),; (58)

« Backward recursion: for k=n to 1

62Fk 0? qk+1
= Ad* d* F
OpiOp; it 10050 Bl OpiOp;
Oqk+1 OQi+1  OFki1 Ogqrsr
d* Fy,
TS et Opi  Opj Op;  Opi
OF41 0qk+1 0*Fi41 Vi,
+ b T
Opi  Op; ) apiapj} " Opidp;
_ad*82Vk Jka adav,c Jkav
p;9p; op; ap]
oV, 32Vk
ooy Y
827k 82Fk
= ST 60
9piOp; " OpiOp; (60)

It should be noted that many of the computations embed-
ded in the forward and backward recursions above need
only be evaluated once, thereby reducing the computa-
tional burden.

B. Exactly Actuated Closed Chains
Recall that for an exactly actuated closed chain,
— (I ) T

Ta = Tra

(61)

Differentiating Equation (61) with respect to p using our
earlier basic identities, we obtain®

Ora = OTra 6JTJ Tr —JaTa(JiT)Trp
Opi dpi  Opi opi
or,
_ T T rp 2
JET 3, (62)
Differentiating again yields
827'a _ 827-7%1 . 82‘][’{ S 8‘]3-’ a(JP_T)T
OpiOp; opiOop; Opiop; P P op; oOp; P
_a‘]g J—TaTrp _ 2 a(Jp_T) .
op; '* op; Op; opi P
P 0T oy
® Opidp; """ Opi  Op,
LOIT g0y 00T Oy
Oop; ¥ Opi “ Jdp; Opi
_ 0? Tp
—JraT P (63)

apzapj

C. Redundantly Actuated Closed Chains
To differentiate the equations of motion for a redun-

dantly actuated closed chain, we can differentiate either

Equation (43) or (44); here we choose the latter, since this
form is more convenient for torque optimization. Suppose

we want to minimize a suitably weighted torque, e.g., sup-
pose
Wty
T=Wth = [WUTU (64)
a(J—T) aJT

5Here we use the fact that

P
dp; o5, 51) Tp-
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where W is a suitable weighting matrix. We wish to mini-
mize

Tr = LwTwr,, (65)
= 1IWyry + 7T W,y (66)
= 7 (@Wuo" + W)y — 27 Wy 7eq

7 WoTea (67)

where W, = WITW,, and W, = WTW,; specifically, we
seek the 7, and 7, that minimize 777. This leads to an
unconstrained calculus of variations problem of the form

ty
nnn/" L(q, ¢, )t

a1 to

(68)

where 1 = 7, and L = 777 in our formulation. Noting that
g and p are independent, the first-order necessary condi-
tions for optimality are

0L dOoL d? 0L
—_ 2= 2 77— 69
Oq dt dq  dit? 9§ (69)
oL
— = 0. 70
on (70)
In particular, the last condition leads to
T
aaTT L= 2(¢Wuo” + W)y — 20Woreu =0 (71)
from which we obtain
7o = (@Wug" + W) oW, (72)
and
Ty = (I - ¢T(¢WU¢T + Wv)_1¢Wu)Tea- (73)
The derivative of the torque with respect to p; is
or OToa 0Ty oty
=W =W, Wy : 74
Opi Opi Opi - Opi (74)
Let ¢ = (¢W,¢T + W,). Then we obtain
0Ty -1 a¢ 7 T, —1 7%
= -2 Wy WuTea
ap: e ( op; ¢ T W
0o _- « OTeq
_Wu ea Wu 75
o VT +¢ ap,») (75)
Oty OTeq 9T 70Ty
op:  om om ¢ opi’ (76)

Differentiating the above equations once again, we get

9’7, _1, Op Or, ¢ o 4
= - - Wu WuTea
oy, ~ ¢ Copap ooy 0 Y0
09 o 9T 4
48])]' Wu apz %) (bWuTea
+2a—¢Wu¢T@_1%(p—1¢WuTea
Op; Op;
¢ .. AT | . OTes
—2"W, Y —
6ij Opi v oW Opi
62¢ T aQS T aTea
+ WuTea + —Wu
OpiOp; Op; Op;
6¢> S 67'6[1, S 62Tea
+—W, W 77
dp;  Op; ¢ 8pi8pj) (77)
921, 0% Teq 02T 04T o1,
= — Ty —
OpiOp; OpiOp;  OpiOp; Jp; Op;
_9¢Tor, g OPm (8)
Opi Opj OpiOp;

The above formulas can be used to analytically compute
the gradient and Hessian for the class of objective functions
considered in this paper.

V. ALGORITHM FOR GENERATING OPTIMAL MOTIONS

In this section, we present the general iterative procedure
for computing optimal motions of the various classes of
kinematic chains. The algorithm is expressed in sufficiently
general form so as to allow for different (unconstrained)
optimization algorithms, although the primary ones we
will be interested in are steepest descent and Newton-type
methods.

The algorithm below describes the motion optimization
procedure for a serial chain mechanism.
¢ Given: Initial and final values of the joint angle dis-
placement, velocity, and acceleration.

e Step 1: Choose the number of control points and the
order of the B-spline curve.

e Step 2: Make an initial assumption of the joint angle
profiles.

o Step 3: For time t = #g to ty:

- Compute the spline function to get the status of joint an-
gle. (Equation (5) )

- Solve the inverse dynamics to determine the torque.
(Equation (25))

- Solve for the gradient and Hessian. (Equations (56) and
(60))

o Step 4: Compute the objective function, gradient, and
Hessian. (Equations (6), (8) and (9))

o Step 5: Check convergence. If yes, terminate. If no, line
search for the next point and go to step 3.

We next present the algorithm for generating optimal
motions of a redundantly actuated closed chain; exactly
actuated closed chains can be considered as a special case
of this general case.

e Given: Initial and final values of the joint angle dis-
placement, velocity, and acceleration for an independent
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set of joints.

e Step 1: Choose the number of control points and the
order of the B-spline curve.

o Step 2: Make an initial assumption of the kinematically
independent joint angle profiles.

o Step 3: For time t = g to ty:

- Compute the spline function to get the status of the joint
angles. (Equation (5) )

- Solve for the remaining joint angle displacements, veloc-
ities, and accelerations.

- Solve for the inverse dynamics, gradient, and Hessian of
the reduced system. (Equations (25), (56), and (60))

- Solve the inverse dynamics to determine the torque.
(Equations (72) and (73))

- Solve for the gradient and Hessian of the torque. (Equa-
tions (75), (76), (77), and (78))

e Step 4: Compute the objective function, gradient and
Hessian. (Equations (6), (8) and (9))

e Step 5: Check convergence. If yes, terminate. If no, line
search for the next point and go to step 3.

Kinematic chains containing close loops must satisfy a
set of loop-closure constraint equations, and it would seem
natural to attempt to apply a constrained optimization pro-
cedure rather than solving the constraint equations at each
iteration. However, for the class of mechanisms of interest
to us, the passive joint values can in general be determined
from the values of the actuated joint values without too
much difficulty—in this regard there exist a number of pro-
cedures (i.e., the Paden-Kahan subproblems—see [22]) for
solving in closed form the inverse kinematics of a large class
of serial chains, as well as efficient and reliable numerical
methods. In this case it is often simpler and more efficient
to directly solve the constraint equations, and apply the
unconstrained optimization methods above.

VI. CASE STUDIES

In this section we present case studies of optimal mo-
tions generated for a number of representative kinematic
chains. All the simulations were performed on a Pentium
IT 392MHz computer, and any performance statistics given
are with respect to this computer specification.

A. Two-Link Open Chain

We first consider the minimum torque lifting motion for
a two-link planar open chain in the presence of gravity.
The motion was obtained in 13 iterations, with a stopping
criterion of ||g|| < 1072, and took 1.1 seconds®. The final
value of the objective function was 314.069. Nine control
points were used for each joint, together with a third-order
curve.

To evaluate the performance of the modified Newton’s
algorithm, we optimize the motion using both steepest de-
scent and the BFGS quasi-Newton method. In the case
of steepest descent, the number of iterations was forcefully
terminated after 229 after the algorithm failed to meet the

6Using the norm of the gradient normalized with respect to the
objective function value does not significantly alter the convergence
behavior in this or any of the other examples

stopping criterion. The final value of the objective func-
tion was 314.069. For the BFGS quasi-Newton method, the
algorithm was forcefully terminated after 45 iterations—
convergence was extremely slow near the solution. The
total elapsed time was 1.27 seconds, and the final value of
the objective function 314.069. The BFGS method on the
other hand approached the vicinity of the solution in the
shortest time among the three methods.

B. Exactly Actuated Closed Chain

Fig. 2. An exactly actuated closed loop manipulator.

We now consider the exactly actuated closed chain of
Figure 2. Joints 1, 2, and 3 are actuated, where joint 2
rotates both L, and L4 together and joint 3, lying coax-
ially with joint 2, rotates only L,. The actuated joint
angles in the initial pose are given by (—30°, —30°,120°),
while in the final pose the angles are (30°,10°,70°). We
seek the minimum torque motion such that the manipula-
tor moves between two poses symmetrically situated about
the workspace in exactly one second. For our test case,
the Modified Newton’s method converged after seven iter-
ations, with a total computation time of 6.94 seconds.

A Steepest Descent Method
AR --- BFGS Quasi-Newton Methog
750 N ——  Newton Method 1

Objective function value

10* 10°
Iteration

Fig. 3. Comparison of optimization methods.

The convergence speed and number of iterations are com-
pared for the steepest descent, Newton’s method, and the
BFGS quasi-Newton method. Figure 3 shows the num-
ber of iterations for each method, while Table I shows the
computation time of each optimization method. As evi-
dent from the figure, the steepest descent method failed
to converge due to ill-conditioning, while both the BFGS
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TABLE 1
THE NUMBER OF ITERATIONS AND TIME CONSUMED FOR EACH
METHOD.

Algorithm Num. iter. | time (sec)
Steepest Descent 200+ 58.184
Modified Newton’s 7 6.94
BFGS Quasi-Newton 18 4.086

quasi-Newton method and the modified Newton’s method
showed good convergence. Although the number of itera-
tions for the modified Newton’s method is smaller than that
for the BFGS quasi-Newton method, for this example the
overall computation time is slightly greater due to the com-
putation of the analytic Hessian at each step. In general,
for complex examples we have found that the total compu-
tation time increases approximately linearly with the num-
ber of parameters. The reason for this is that for Newton’s
method, the asymptotic convergence rate is quadratic and
also independent of the number of parameters [16]. Hence
the computation time is dominated by the time needed to
compute the objective function, gradient, and Hessian, all
of which increase linearly with the number of parameters.

C. Redundantly Actuated Closed Chain: the Rower

(a) Human on rowing (b) Corresponding
machine. mechanism.

Fig. 4. A schematic picture of rowing.

As our final example, we consider the minimum torque
rowing motion of a human consisting of two closed loops.
Figure 4 (b) shows the planar kinematic chain used to
model the human. The mechanism has five kinematic de-
grees of freedom and seven actuated joints. In the figure,
the circles represent rotational joints and rectangles repre-
sent prismatic joints; filled-in circles imply that the joint
is actuated. The prismatic joints and the base link are not
shown explicitly in the figure for visualization purposes.

A 40 newton-meter torque is applied clockwise at the
joint to which the oar is attached. Table IT shows the
masses and rotational inertias of the various links, obtained
from [23] to closely approximate the actual values for a
typical human. The top row of Figure 5 depicts the initial
motion, obtained by linear interpolation of the joint val-
ues between the initial and final poses, while the optimized
motion is shown in the bottom row. It is interesting to

TABLE 11
MASSES AND MOMENTS OF INERTIA FOR THE HUMAN MODEL.

| Link | Mass(kg) | Moment of inertia(kgmn?) |
Pelvis 16.61 (0.23, 0.18, 0.16)
Trunk | 2027 | (0.73, 0.63, 0.32)
Arm 2.97 (0.025, 0.025, 0.005)
Forearm 1.21 (0.005, 0.0054, 0.0012)
Thigh 835 | (0.15, 0.16, 0.025)
Shank 4.16 (0.055, 0.056, 0.007)

note the similarity between the optimized motion and the
actual rowing motion exerted by a human.

For this example the optimized motion was obtained af-
ter 38 iterations using the BFGS quasi-Newton method,
with a total computation time of 54.43 seconds. Ten control
points were used for each joint trajectory, with a B-spline of
order three for the interpolating curves. The same optimal
motion was obtained with the modified Newton algorithm,
but with a longer computation time. Our experience simu-
lating a wide array of multibody systems indicates that, in
general, the BFGS quasi-Newton method requires between
10-50% less computation time than the modified Newton
method.

VII. CONCLUSION

In this paper we have presented an optimization-based
methodology for motor learning that emulates the low-level
capabilities of human motor coordination and learning.
The systems we address include chains containing multi-
ple closed loops and an arbitrary number of actuators; this
includes antagonistic, redundantly actuated systems like
the human body.

Previous classical optimization-based approaches to mo-
tor learning were limited in their effectiveness to kinemati-
cally simple, low degree-of-freedom systems; for even mod-
erately complex systems, these algorithms typically led to
ill-conditioning, instability, and poor convergence behav-
ior, because of their inability to deal with the complexity
of the nonlinear dynamics, and their reliance on approxi-
mated gradient and Hessian information.

In this paper we have shown that by appealing to tech-
niques from the theory of Lie groups, both the equations
of motion, and gradient and Hessian information, can be
exactly and recursively computed for even complicated an-
tagonistic multibody systems. The resulting algorithms
are still computation-intensive, but are O(n) with respect
to the number of rigid bodies comprising the system. Ex-
amples of minimum effort motions for various multibody
systems demonstrate that these algorithms can serve as a
basis for a robust, computationally effective, model-based
motor learning capability.

Our initial results suggest a number of topics for further
study. First, as shown from our case studies, the number of
control points and the order of the curve play an important
role in both the computational efficiency and final shape of
the optimized motions. From this point of view, B-spline
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wavelets are also worth considering in that the trajectory is
represented hierarchically instead of in terms of a B-spline
basis [36]. Other objective functions, e.g., minimum-time
motions, also deserve further attention.

APPENDIX

I. DIFFERENTIATION OF THE CONSTRAINT JACOBIAN

We provide formulas for obtaining the derivatives of the
constraint Jacobian (note that the Jacobian in space frame
coordinates is used throughout). Let

J = [ Ja] (79)
Ji = Ady,.S;. (80)
Then
0J, _ JiJp — N J; = [Ji, Jl] ifi< l, (81)
0qi JJi— ) J; =0 ifi > 1.
[adJiJj, Ji]+ [Jj,adjl. Ji]| =
adadh J; Jp+ adeadJi J
0 O _ ifi<j<l, (82)
0q; 8‘1]‘ B [Jj,adji Ji] = adJ]. ady, Ji
if j <i<l,
L0 elsewhere.
i—1
Ji =Y ady, Jid; (83)
j=1
0.Jy — O
— = —ady, J, 84
op; 2 p; 0 (84)
82Jl = aqu
= ————ady, J,
Opiop; ,;{émapj e
8qk = aqm
— —(ady, ady_J
op; 2, Opi (o)
OQk = BQm
ik dy
+8pj mZ1 B, (adad,,, 0 J1)} (85)
Ph_ li{(ad T+ adon, 22 4 ados, 201
OpiOp; a =1 azi;fuj : %3%’ gik Op;j
I . dJ;  Odx
dy 2L dos, dy 22
+ady, 8pi8pj)% + (a gTle +ady, 8pj)8pi
0J; . Oq,
dos dy 27020k
+(a aapi Ji +ady, 8])2')8])]'
D%
dy, JJj———1. 86
+ady, lapiapj} (86)
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