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studies of various human motions, e.g., maximum-heightjumping [24℄, voluntary arm movements [15℄, maintainingpostural balane [14℄, minimum-time running and swim-ming [17℄, even wheelhair propelling [35℄. Besides some ofthe more obvious optimization riteria like minimum en-ergy or ontrol e�ort, strategies that involve minimizingthe derivative of aeleration (or jerk) [7℄, as well as mus-le or metaboli energy osts [1℄, have also been examinedin the ontext of spei� arm motions. Models for humanmotor learning and ontrol that take into aount both themusle dynamis and features of the neural system havebeen proposed in, e.g., [33℄, [11℄, [9℄.Some researhers have also presented biologial evidenesuggesting that the nervous system impliitly performs in-verse dynamis to generate feedforward motor ommands[32℄, partiularly for fast motions. Previous researh alsoshows that it is possible to identify aurate internal mod-els from movement data, and that suh strategies an besuessfully implemented in robots (see [2℄ and the refer-enes ited therein). Aproahes to motor oordination andlearning based on equilibrium and hierarhial approahesinspired by biologial systems [21℄, [5℄, and dynamial sys-tems theory [10℄ have also been presented.From an engineering perspetive an optimization-basedapproah to movement generation usually strikes one asthe �rst reasonable thing to try. The reason that suhapproahes have been largely unsuessful, it seems, isthat the omplexity of the dynami equations inevitablylead to intratable optimization problems. Indeed, the in-tratability of the optimization seems at least partly|if notlargely|responsible for the reent urry of attention givento, e.g., neural networks, geneti algorithms, and other evo-lutionary optimization approahes to motor learning (see,e.g., [34℄, [26℄, [31℄).One of the arguments put forth in this paper is thatmovement generation based on dynami models and lassi-al desent-type optimization methods is indeed a ompu-tationally feasible paradigm. In addition to our work, [6℄have also demonstrated the feasibility of this approah togenerate motions for tree struture-like animated hara-ters, by a suitable hoie of physis-based onstraints andobjetive funtion. Stable open-loop motions for perform-ing forward somersaults have also been obtained via nu-merial solution of an optimal ontrol problem in [20℄.Aside from the omplexity of the nonlinear dynamis,another reason lassial desent methods, despite their re-liability (indeed, in many ases these algorithms are theonly ones that an guarantee loal optimality and onver-gene), are bypassed in many of today's motion learningshemes is their reliane on gradient and Hessian informa-



2 IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, SEPTEMBER 2004tion. Although in priniple one an numerially approxi-mate these quantities, for problems involving even moder-ately omplex multibody systems, approximated gradientsand Hessians more often than not lead to ill-onditioning,instability, and poor onvergene behavior, not to mentiona signi�ant inrease in omputation.One of the primary ontributions of this paper is that byappealing to tehniques from the theory of Lie groups, it ispossible to formulate the equations of motion of even om-pliated antagonisti multibody systems like the humanbody in suh a way as to render the optimization problemtratable. In many ases the optimized motions an evenbe obtained quite eÆiently and in a numerially robustway. The key lies in the ability to reursively evaluate thenonlinear dynamis, and also to reursively ompute exatanalyti gradients and Hessians without resorting to nu-merial approximations. The resulting algorithms are stillomputation-intensive by today's standards, but are O(n)with respet to the number of rigid bodies omprising thesystem, and perhaps most important of all, robust.We begin by desribing the dynami modeling and op-timization algorithms developed using tehniques from Liegroup theory. Some of the preliminary results spei� toserial hains have been reported in [27℄, inluding the re-ursive omputation of analyti gradients for serial hains[18℄, [12℄. In this paper we onsiderably enlarge the lass ofandidate mehanisms, to hains ontaining multiple losedloops and an arbitrary number of atuators; this inludesantagonisti, redundantly atuated systems like the humanbody. We also develop general reursive algorithms for ob-taining higher-order derivatives of the dynamis for thislass of hains.Based on these new algorithms, reursive Newton typeoptimization algorithms are then developed for generat-ing optimal movements. As is well-known, Newton meth-ods have quadrati onvergene properties, and o�er supe-rior performane over purely gradient-based optimizationmethods like steepest desent. Examples of minimum ef-fort motions for various multibody systems are providedto demonstrate that these algorithms an serve as a basisfor generating eÆient, physially natural movements in arobust, omputationally e�etive manner.II. Problem StatementThe equations of motion for our systems, whih are mod-eled as a set of oupled rigid bodies, are of the formM(q)�q + C(q; _q) _q +N(q; _q) = � (1)where M(q) 2 <n�n is the mass matrix, C(q; _q) 2 <n�n isthe Coriolis matrix, and N(q; _q) 2 <n inludes gravity andother fores (for the moment we onsider only holonomisystems in whih the equations of motion are expressedin independent oordinates). One should not be deeivedby the apparent simpliity of Equation (1); for even kine-matially straightforward strutures like standard six-axisindustrial robots, analyti expressions for M(q), C(q; _q),and N(q) are extremely ompliated.

We will be interested in minimizing ost funtionals ofthe form J(�) = �(q; _q; tf ) + Z tf0 L(q; _q; �; t) dt (2)subjet to Equation (1) and the boundary onditionsq(0) = q0; _q(0) = 0 (3)q(tf ) = qf ; _q(tf ) = 0 (4)where for some of our examples, � penalizes deviationsfrom the desired �nal ondition. For most of our examples,the e�ort L = 12 jj�ajj2 aptures the desire to minimize theexerted joint torques. The �nal time tf may be either freeor �xed in our formulation; for the examples presented inthis paper tf is assumed �xed. For the ase of free �naltime, it is possible to modify the equations developed be-low to inlude a time-sale parameter, as shown in [37℄.We also note that the Newton's method developed in thiswork applies to systems with no hard onstraints on atu-ator torques or workspae motion. Soft onstraints an bestraightforwardly added to the problem by adding penaltyfuntions to handle motor torque limitations; again, see[37℄.Numerial methods for solving optimal ontrol problemsof the above form an be lassi�ed into diret and indiretmethods. Indiret methods attempt to solve the optimalityonditions, whih are expressed in terms of the maximumpriniple [4℄, the adjoint equations, and the tranversality(boundary) onditions. Various relaxation and shootingmethods have been developed to solve the assoiated two-point boundary value problem.Despite the well-doumented suesses of the indiret ap-proah, they have been displaed in reent years by diretmethods. The primary reasons are that the region of on-vergene for indiret methods is relatively small, and it isdiÆult to inorporate path inequality onstraints. For di-ret methods, the state and ontrol variables are adjusteddiretly to optimize the objetive funtion. In this paperwe fous exlusively on the diret approah; the reader isreferred to, e.g., [3℄, [25℄ for a survey of developments innumerial optimal ontrol sine the 1960's.For our approah, a loal solution to the optimal ontrolproblem is found by assuming that the joint oordinatesq(t) in (1) are parameterized by B-splines, and varyingthese parameters in the following manner. The B-splineurve depends on the blending, or basis, funtions Bi(t),and the ontrol points P = fp1; :::; pmg; with pi 2 <n. Thejoint trajetories then have the form q = q(t; P ), withq(t; P ) = mXi=1 Bi(t)pi (5)The ontrol points pi of the spline have only a loal e�eton the urve geometry, so given any t there will a max-imum of four nonzero Bi(t) in (5) for a ubi spline. Inaddition, the onvex hull property of B-splines makes themuseful for smoothing or approximating data. The fat that



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 3Pmi=1Bi(t) = 1 also gives the desirable property that limitson joint displaements an be imposed through limits onthe spline parameters pi. That is, if one onstrains pi � q;then it follows that q(t) � q 8t 2 [0; tf ℄.It should also be noted that the use of B-spline polyno-mials as the basi primitives in terms of whih our motionsare expressed is onsistent with reent results in neuro-siene: in [13℄ it was linially observed that when humansubjets move their hand in a irular motion, the traje-tory obtained an be best desribed as a summation of\bell shaped" basis funtions. These funtions are thentranslated and saled to �nd the best math to the humanmovement. In essene we ahieve the same basi e�etthrough (5).By parametrizing the trajetory in terms of B-splines,the original optimal ontrol redues to a parameter opti-mization problem of the formMinimizeP J(P ) = �(P; tf ) + Z tf0 L(P; t)dt (6)subjet to q � pi � q; i = 1 : : :m (7)Here � = �(P; t); q; _q; and �q are all given funtions of tand P from (5) and its time-derivatives, and � beomes anexpliit funtion of the spline parameters through (1). Bya proper hoie of spline basis funtions at both ends of thejoint trajetory, the path end onditions (3) and (4) an besatis�ed.By onverting the original problem into a parameter op-timization problem with no nonlinear onstraints, eÆientdesent methods an then be used to minimize the ostfuntion. However, to assure onvergene of these algo-rithms two onditions must be met: the seond derivativesof J(P ) must be bounded, and every approximate Hessian(found, for example, from a BFGS update [16℄) used in aquasi-Newton algorithm must remain positive de�nite withbounded ondition number [8℄. When one uses �nite di�er-ene approximations for the gradient of J(P ), it is usuallynot possible to ensure a bounded ondition number for theapproximated Hessian; most often the result is that thealgorithms terminate prematurely [19℄.We note that the gradient and Hessian of the ost fun-tional are given byrJ(P ) = Z tf0 � � (rP �) dt (8)and r2J(P ) = Z tf0 r2P � � � +rP � � rP � dt (9)The most omputationally diÆult step in the evaluationof the gradient and Hessian is determining the derivativesof the joint torques with respet to the path parametersP . These evaluations require that the dynami equationsbe di�erentiated twie with respet to the joint variables.In a later setion we show how to ompute these deriva-tives reursively for the general lass of multibody systemsaddressed in this paper.

III. Reursive DynamisWe now present the reursive dynamis formulation formultibody systems based on Lie group tehniques. We be-gin with a brief review of serial hain dynamis as presentedin [27℄, followed by the dynamis of exatly atuated losedhains as presented in [29℄. We then present a reursive for-mulation of the dynamis of redundantly atuated losedhains.A. Geometri PreliminariesWe begin with some geometri preliminaries. The Spe-ial Eulidean group of rigid body motions, denoted SE(3),is represented by matries of the formG = � R p0 1 � 2 SE(3) (10)where R 2 SO(3) is a 3 � 3 rotation matrix, and p 2<3. Elements of SE(3) will also be denoted by the pair(R; p). The orresponding Lie algebra se(3) then admitsthe matrix representationg = � [!℄ v0 0 � ; [!℄ = 24 0 �!3 !2!3 0 �!1�!2 !1 0 35 (11)where v 2 <3. Elements of se(3) will alternatively be de-noted by (!; v) for notational onveniene. Later ! andv will be interpreted physially as an angular veloity andlinear veloity, respetively. In this ase we refer to (!; v)as a generalized veloity, or twist.The exponential map exp : se(3) ! SE(3) an be om-puted by the following losed-form formula: if ! = !̂�,where k!̂k = 1 and � 2 R, thenexp�� [!̂℄ v0 0 ��� = � e[!̂℄� p0 1 � (12)where p = (I�+ (1� os�)[!̂℄ + (�� sin�)[!̂℄2)v (13)e[!̂℄� = I + sin�[!̂℄ + (1� os�)[!̂℄2 (14)Given an element G 2 SE(3), we also reall the ad-joint mapping AdG : se(3) ! se(3), de�ned as AdG(g) =GgG�1. Given an element g1 2 se(3), the Lie braketadg1 : se(3) ! se(3) is given by adg1(g2) = g1g2 � g2g1.The two adjoint mappings an also be represented in ma-trix form by AdG(g) = � R 0[p℄R R��!v� (15)adg1(g2) = �[!1℄ 0[v1℄ [!1℄��!2v2� (16)where G = (R; p) 2 SE(3) and gi = (!i; vi), i = 1; 2.The orresponding dual adjoint mappings Ad�G : se�(3) !



4 IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, SEPTEMBER 2004se�(3) and ad�g : se�(3) ! se�(3) an be represented inmatrix form asAd�G(�) = � R 0[p℄R R�T �mf � (17)ad�g(�) = �[!℄ 0[v℄ [!℄�T �mf � (18)where � 2 se�(3) has the form� = � [m℄ f0 0 � (19)with m 2 R3 ; f 2 R3 . In what follows m and f will beinterpreted physially as a moment and fore, respetively.In this ase we refer to (m; f) as a generalized fore, orwrenh.B. Serial ChainsGiven an n-link serial hain, let fk�1;k 2 SE(3) be thetransformation from link frame i-1 to link frame i, Sk 2se(3) the joint twist assoiated with joint k, Mk 2 SE(3)be the value of fk�1;k when joint qk = 0, Vk 2 se(3) thesix-dimensional generalized veloity of the link fkg frameexpressed in frame fkg, Fk the six-dimensional generalizedfore exerted by link fk-1g on link fkg expressed in framefkg, Jk the 6�6 generalized inertia matrix of link fkg, and�k the torque exerted at joint fkg.1 Jk has the followingstruture: Jk = � Ik �mk[rk ℄2 mk[rk℄�mk[rk℄ mkI � (20)where Ik 2 <3�3 is the rotational inertia of link fkg aboutthe enter of mass2, rk is the three-dimensional vetor fromthe frame fkg origin to the enter of mass,mk is the mass oflink fkg, and I is the 3�3 identity matrix. With these def-initions the inverse dynamis an be omputed reursivelyas follows:� Initialization V0; _V0; Fn+1� Forward reursion: for k=1 to nfk�1;k = MkeSkqk (21)Vk = Adf�1k�1;kVk�1 + Sk _qk (22)_Vk = Adf�1k�1;k _Vk�1 + Sk�qk + adVkSk _qk (23)� Bakward reursion: for k=n to 1Fk = Ad�f�1k;k+1Fk+1 + Jk _Vk � ad�VkJkVk (24)�k = STk Fk (25)A reursive formulation of serial hain forward dynam-is based on the same geometri onepts is given in [30℄,whose details we omit for spae reasons.1Fn+1 is the external fore, e.g., tool fore, applied to link fngexpressed in frame fn+1g.2Ik is alulated with respet to a frame attahed at the enter ofmass, with the same orientation as frame fkg.

C. Exatly Atuated Closed ChainsThe traditional approah to solving the inverse dynamisof losed hains is to �rst solve the inverse dynamis of theredued system, followed by an appliation of D'Alembert'sPriniple to solve for the atuated joint torques of thelosed hain mehanism. By adopting the Lie theoretiframework we an exploit the reursive algorithms for theserial hain ase, and derive a similar set of reursive al-gorithms for exatly evaluating the losed hain dynamis[29℄.
at

F(a) atual system 0=
rt

F(b) redued systemFig. 1. The redued systemTo illustrate the approah, let us onsider the mehanismof Figure 1. The motion of this mehanism is generatedby the atuator at joint 1 and the external applied foreFat. We an think of another idential mehanism thatgenerates the same motion, but Frt = 0 and every joint isassumed atuated3; this is essentially the onept of the re-dued system. Note that the internal fores in the reduedsystem are di�erent from those of the atual system.Sine the atual system and the redued system produethe same motion, the work performed by eah system isthe same. Let _Wa and _Wr be the work done by the atualand redued systems, respetively. Likewise, let �a and �rbe torque vetor, and qa and qr be the atuated joint anglevetor of the atual and redued systems, respetively. Vtis the generalized veloity of the tool frame. Then_Wa = �Ta _qa � F TatVt (26)_Wr = �Tr _qr = �Tra _qa + �Trp _qp (27)where qr is partitioned into qr = (qa; qp), with qp orre-sponding to the passive (unatuated) joint of the atualsystem. �r is partitioned into �r = (�ra; �rp), with �ra thetorque at joint qa and �rp the torque at joint qp. Using thefat that Vt = J _q = Ja _qa + Jp _qp4 and Equation (26), weget _Wa = (�Ta � F TatJa) _qa � F TatJp _qp: (28)Sine _qa and _qp are independent, the following relations3Fat is the external applied fore of the atual system, while Frt isthat of the redued system.4J = [JaJp℄ is the Jaobian matrix, where Ja is the Jaobian matrixof the atuated joint, and Jp that of the passive joint of the atualsystem.



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 5hold: Fat = �J�Tp �rp (29)�a = JTa Fat + �ra (30)= �ra � (J�1p Ja)T �rp (31)Note that Jp must be nonsingular; if it is singular, themehanism is in a on�guration orresponding to an atu-ator singularity [28℄.With the above, we are now ready to desribe the dy-namis algorithm for exatly atuated losed hains. For alosed hain mehanism, Vt = 0 and Fat is the onstraintfore applied to the mehanism so as to satisfy the on-straint equations. The inverse dynamis an be omputedusing the reursive inverse dynamis algorithm of the re-dued system as follows:� Initialization V0; _V0; Frt = 0� Forward reursion: for k=1 to nfk�1;k = MkeSkqk (32)Vk = Adf�1k�1;kVk�1 + Sk _qk (33)_Vk = Adf�1k�1;k _Vk�1 + Sk�qk + adVkSk _qk (34)� Bakward reursion: for k=n to 1Fr;k = Ad�f�1k;k+1Fr;k+1 + Jk _Vk � ad�VkJkVk (35)�k = STk Fr;k (36)� Solve onstraint foreFa;t = �JTp �rp (37)� Bakward reursion: for k=n to 1Fa;k = Fr;k +Ad�f�1k;n+1Fa;t (38)�a;k = STk Fa;k (39)If one needs to solve only �a, one an use Equation (31)without performing the last bakward reursion. See [29℄for a disussion of the reursive forward dynamis formu-lation for exatly atuated losed hains.D. Redundantly Atuated Closed ChainsA system is redundantly atuated when the number ofatuated joints is greater than the degrees of freedom ofthe mehanism. In this ase the inverse dynamis will ingeneral not have a unique solution. Equations (26) and (27)are still valid for the redundantly atuated ase, however.Using Vt = J _q = Ja _qa + Jp _qp, we have�rp = �JTp F (40)�ra = �JTa F + �a (41)where Fat in Equation (26) is replaed with F. Therefore,F = �(JTp )y�rp +Null(JTp )�T (42)�a = �ra � JTa (JTp )y�rp + JTa Null(JTp )�T (43)

where � is the Lagrange multiplier, Null(�) is a null spaebasis, and (JTp )y = Jp(JTp Jp)�1.We now determine the relationship between the torquesof a redundantly atuated system and its orrespondingexatly atuated system. Let the atuated joints and or-responding torques of the redundantly atuated system beqoa and �oa, respetively, and the atuated joints and or-responding torques of the exatly atuated system be qeaand �ea, respetively. Then from D'Alembert's Priniple,�Toa _qoa = �Tea _qea: (44)Now let us partition qoa and �oa into qoa = (qea; qv) and�oa = (�u; �v), where qv is not atuated in the orrespond-ing exatly atuated system, and its torque is �v . From_qep = �J�1p Ja _qea, let _qv = � _qea for some �. Then�Toa _qoa = �Tu _qea + �Tv � _qea = �Tea _qea (45)from whih it follows that�u + �T �v = �ea (46)Note that Jp is required to be nonsingular. In the eventthat it is singular, one an simply onstrut the orrespond-ing exatly atuated system in suh a way that Jp is non-singular, by hoosing the appropriate set of atuated joints.We will use the above relation in Setion IV-B.IV. Differentiation of the Equations of MotionTo obtain the gradient and Hessian of the objetive fun-tion, it is neessary to di�erentiate the equations of motionwith respet to the joint variables. In this setion we derivereursive algorithms to ompute the gradient and Hessianfor both open loop and losed loop systems.A. Serial ChainsLet q = q(p; t), where t 2 R and p 2 Rk . Also let S; V 2se(3), M 2 SE(3). Then the following identities an beestablished by a straightforward but involved alulation:��pAdeSqM = �q�padSAdeSqM (47)��pAdMeSq = �q�pAdMeSq adS (48)��pAd�eSqM = �q�pAd�eSqMad�S (49)��pAd�MeSq = �q�pad�SAd�MeSq (50)��padV = ad �V�p (51)��pad�V = ad��V�p (52)An earlier, more ompliated version of the above identitieswas also obtained in [18℄.Using these results, we an di�erentiate the inverse dy-namis of a serial hain with respet to the joint parametervetor p via the following algorithm:



6 IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, SEPTEMBER 2004� Initialization �V0�pi ; � _V0�pi ; �Fn+1�pi� Forward reursion: for k=1 to n�Vk�pi = Adf�1k�1;k �Vk�1�pi + Sk � _qk�pi � adSkVk �qk�pi (53)� _Vk�pi = Adf�1k�1;k � _Vk�1�pi + Sk ��qk�pi � adSkf�qk�pi Adf�1k�1;k _Vk�1 + �Vk�pi _qk + Vk � _qk�pi g (54)� Bakward reursion: for k=n to 1�Fk�pi = Ad�f�1k;k+1(ad��Sk+1Fk+1 �qk+1�pi + �Fk+1�pi )+Jk � _Vk�pi � ad��Vk�pi JkVk � ad�VkJk �Vk�pi (55)��k�pi = STk �Fk�pi (56)By di�erentiating the above reursive gradient algo-rithm, the seond derivatives of the dynamis an in turnbe analytially omputed via the following reursive algo-rithm:� Initialization �2V0�pi�pj ; �2 _V0�pi�pj ; �2Fn+1�pi�pj� Forward reursion: for k=1 to n�2Vk�pi�pj = Adf�1k�1;k �2Vk�1�pi�pj + Sk �2 _qk�pi�pj�adSkf�qk�pi Adf�1k�1;k �Vk�1�pj+�Vk�pi �qk�pj + Vk �2qk�pi�pj g (57)�2 _Vk�pi�pj = Adf�1k�1;k �2 _Vk�1�pi�pj + Sk �2�qk�pi�pj�adSkfAdf�1k�1;k ( _Vk�1 �2qk�pi�pj+� _Vk�1�pj �qk�pi + � _Vk�1�pi �qk�pj ) + Vk �2 _qk�pi�pj+ �2Vk�pi�pj _qk + �Vk�pi � _qk�pj + �Vk�pj � _qk�pi�adSkAdf�1k�1;k _Vk�1 �qk�pi �qk�pj g (58)

� Bakward reursion: for k=n to 1�2Fk�pi�pj = Ad�f�1k;k+1fad��Sk+1(Fk+1 �2qk+1�pi�pj+ad��Sk+1Fk+1 �qk+1�pi �qk+1�pj + �Fk+1�pj �qk+1�pi+�Fk+1�pi �qk+1�pj ) + �2Fk+1�pi�pj g+ Jk �2 _Vk�pi�pj�ad��2Vk�pi�pj JkVk � ad��Vk�pi Jk �Vk�pj�ad��Vk�pj Jk �Vk�pi � ad�VkJk �2Vk�pi�pj (59)�2�k�pi�pj = STk �2Fk�pi�pj (60)It should be noted that many of the omputations embed-ded in the forward and bakward reursions above needonly be evaluated one, thereby reduing the omputa-tional burden.B. Exatly Atuated Closed ChainsReall that for an exatly atuated losed hain,�a = �ra � (J�1p Ja)T �rp (61)Di�erentiating Equation (61) with respet to p using ourearlier basi identities, we obtain5��a�pi = ��ra�pi � �JTa�pi J�Tp �rp � JTa �(J�Tp )�pi �rp�JTa J�Tp ��rp�pi (62)Di�erentiating again yields�2�a�pi�pj = �2�ra�pi�pj � �2JTa�pi�pj J�Tp �rp � �JTa�pi �(J�Tp )�pj �rp��JTa�pi J�Tp ��rp�pj � �JTa�pj �(J�Tp )�pi �rp�JTa �2(J�Tp )�pi�pj �rp � JTa �(J�Tp )�pi ��rp�pj��JTa�pj J�Tp ��rp�pi � JTa �(J�Tp )�pj ��rp�pi�JTa J�Tp �2�rp�pi�pj (63)C. Redundantly Atuated Closed ChainsTo di�erentiate the equations of motion for a redun-dantly atuated losed hain, we an di�erentiate eitherEquation (43) or (44); here we hoose the latter, sine thisform is more onvenient for torque optimization. Supposewe want to minimize a suitably weighted torque, e.g., sup-pose � =W�oa = �Wu�uWv�v� (64)5Here we use the fat that �(J�Tp )�pi = �Jp �JTp�pi Jp.



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 7where W is a suitable weighting matrix. We wish to mini-mize �T � = �ToaW TW�oa (65)= �Tu Ŵu�u + �Tv Ŵv�v (66)= �Tv (�Ŵu�T + Ŵv)�v � 2�Tv �Ŵu�ea+�TeaŴu�ea (67)where Ŵu = W Tu Wu, and Ŵv = W Tv Wv ; spei�ally, weseek the �u and �v that minimize �T � . This leads to anunonstrained alulus of variations problem of the formminq;� Z tft0 L(q; _q; �q; �) dt (68)where � = �v and L = �T � in our formulation. Noting thatq and � are independent, the �rst-order neessary ondi-tions for optimality are�L�q � ddt �L� _q + d2dt2 �L��q = 0 (69)�L�� = 0: (70)In partiular, the last ondition leads to��T ���v = 2(�Ŵu�T + Ŵv)�v � 2�Ŵu�ea = 0 (71)from whih we obtain�v = (�Ŵu�T + Ŵv)�1�Ŵu�ea (72)and �u = (I � �T (�Ŵu�T + Ŵv)�1�Ŵu)�ea: (73)The derivative of the torque with respet to pi is���pi =W ��oa�pi =Wu ��u�pi +Wv ��v�pi : (74)Let ' = (�Ŵu�T + Ŵv). Then we obtain��v�pi = '�1(�2 ���pi Ŵu�T'�1�Ŵu�ea+ ���pi Ŵu�ea + �Ŵu ��ea�pi ) (75)��u�pi = ��ea�pi � ��T�pi �v � �T ��v�pi : (76)

Di�erentiating the above equations one again, we get�2�v�pi�pj = '�1(� �'�pi ��v�pj � 2 �2��pi�pj Ŵu�T'�1�Ŵu�ea�4 ���pj Ŵu ���pi T'�1�Ŵu�ea+2 ���pj Ŵu�T'�1 ���pi'�1�Ŵu�ea�2 ���pj Ŵu ���pi T'�1�Ŵu ��ea�pi+ �2��pi�pj Ŵu�ea + ���pj Ŵu ��ea�pi+ ���pi Ŵu ��ea�pj + �Ŵu �2�ea�pi�pj ) (77)�2�u�pi�pj = �2�ea�pi�pj � �2�T�pi�pj �v � ��T�pj ��v�pi� ���pi T ��v�pj � �T �2�v�pi�pj (78)The above formulas an be used to analytially omputethe gradient and Hessian for the lass of objetive funtionsonsidered in this paper.V. Algorithm for Generating Optimal MotionsIn this setion, we present the general iterative proedurefor omputing optimal motions of the various lasses ofkinemati hains. The algorithm is expressed in suÆientlygeneral form so as to allow for di�erent (unonstrained)optimization algorithms, although the primary ones wewill be interested in are steepest desent and Newton-typemethods.The algorithm below desribes the motion optimizationproedure for a serial hain mehanism.� Given: Initial and �nal values of the joint angle dis-plaement, veloity, and aeleration.� Step 1: Choose the number of ontrol points and theorder of the B-spline urve.� Step 2: Make an initial assumption of the joint anglepro�les.� Step 3: For time t = t0 to tf :- Compute the spline funtion to get the status of joint an-gle. (Equation (5) )- Solve the inverse dynamis to determine the torque.(Equation (25))- Solve for the gradient and Hessian. (Equations (56) and(60))� Step 4: Compute the objetive funtion, gradient, andHessian. (Equations (6), (8) and (9))� Step 5: Chek onvergene. If yes, terminate. If no, linesearh for the next point and go to step 3.We next present the algorithm for generating optimalmotions of a redundantly atuated losed hain; exatlyatuated losed hains an be onsidered as a speial aseof this general ase.� Given: Initial and �nal values of the joint angle dis-plaement, veloity, and aeleration for an independent



8 IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, SEPTEMBER 2004set of joints.� Step 1: Choose the number of ontrol points and theorder of the B-spline urve.� Step 2: Make an initial assumption of the kinematiallyindependent joint angle pro�les.� Step 3: For time t = t0 to tf :- Compute the spline funtion to get the status of the jointangles. (Equation (5) )- Solve for the remaining joint angle displaements, velo-ities, and aelerations.- Solve for the inverse dynamis, gradient, and Hessian ofthe redued system. (Equations (25), (56), and (60))- Solve the inverse dynamis to determine the torque.(Equations (72) and (73))- Solve for the gradient and Hessian of the torque. (Equa-tions (75), (76), (77), and (78))� Step 4: Compute the objetive funtion, gradient andHessian. (Equations (6), (8) and (9))� Step 5: Chek onvergene. If yes, terminate. If no, linesearh for the next point and go to step 3.Kinemati hains ontaining lose loops must satisfy aset of loop-losure onstraint equations, and it would seemnatural to attempt to apply a onstrained optimization pro-edure rather than solving the onstraint equations at eahiteration. However, for the lass of mehanisms of interestto us, the passive joint values an in general be determinedfrom the values of the atuated joint values without toomuh diÆulty|in this regard there exist a number of pro-edures (i.e., the Paden-Kahan subproblems|see [22℄) forsolving in losed form the inverse kinematis of a large lassof serial hains, as well as eÆient and reliable numerialmethods. In this ase it is often simpler and more eÆientto diretly solve the onstraint equations, and apply theunonstrained optimization methods above.VI. Case StudiesIn this setion we present ase studies of optimal mo-tions generated for a number of representative kinematihains. All the simulations were performed on a PentiumII 392MHz omputer, and any performane statistis givenare with respet to this omputer spei�ation.A. Two-Link Open ChainWe �rst onsider the minimum torque lifting motion fora two-link planar open hain in the presene of gravity.The motion was obtained in 13 iterations, with a stoppingriterion of kgkk < 10�2, and took 1.1 seonds6. The �nalvalue of the objetive funtion was 314.069. Nine ontrolpoints were used for eah joint, together with a third-orderurve.To evaluate the performane of the modi�ed Newton'salgorithm, we optimize the motion using both steepest de-sent and the BFGS quasi-Newton method. In the aseof steepest desent, the number of iterations was forefullyterminated after 229 after the algorithm failed to meet the6Using the norm of the gradient normalized with respet to theobjetive funtion value does not signi�antly alter the onvergenebehavior in this or any of the other examples

stopping riterion. The �nal value of the objetive fun-tion was 314.069. For the BFGS quasi-Newton method, thealgorithm was forefully terminated after 45 iterations|onvergene was extremely slow near the solution. Thetotal elapsed time was 1.27 seonds, and the �nal value ofthe objetive funtion 314.069. The BFGS method on theother hand approahed the viinity of the solution in theshortest time among the three methods.B. Exatly Atuated Closed Chain
Joint 2�
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Fig. 2. An exatly atuated losed loop manipulator.We now onsider the exatly atuated losed hain ofFigure 2. Joints 1, 2, and 3 are atuated, where joint 2rotates both L2 and L4 together and joint 3, lying oax-ially with joint 2, rotates only L4. The atuated jointangles in the initial pose are given by (�30Æ;�30Æ; 120Æ),while in the �nal pose the angles are (30Æ; 10Æ; 70Æ). Weseek the minimum torque motion suh that the manipula-tor moves between two poses symmetrially situated aboutthe workspae in exatly one seond. For our test ase,the Modi�ed Newton's method onverged after seven iter-ations, with a total omputation time of 6.94 seonds.
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Fig. 3. Comparison of optimization methods.The onvergene speed and number of iterations are om-pared for the steepest desent, Newton's method, and theBFGS quasi-Newton method. Figure 3 shows the num-ber of iterations for eah method, while Table I shows theomputation time of eah optimization method. As evi-dent from the �gure, the steepest desent method failedto onverge due to ill-onditioning, while both the BFGS



SUNG-HEE LEE ET. AL.: NEWTON-TYPE ALGORITHMS FOR ROBOT MOTION OPTIMIZATION 9TABLE IThe number of iterations and time onsumed for eahmethod.Algorithm Num. iter. time (se)Steepest Desent 200+ 58.184Modified Newton's 7 6.94BFGS Quasi-Newton 18 4.086quasi-Newton method and the modi�ed Newton's methodshowed good onvergene. Although the number of itera-tions for the modi�ed Newton's method is smaller than thatfor the BFGS quasi-Newton method, for this example theoverall omputation time is slightly greater due to the om-putation of the analyti Hessian at eah step. In general,for omplex examples we have found that the total ompu-tation time inreases approximately linearly with the num-ber of parameters. The reason for this is that for Newton'smethod, the asymptoti onvergene rate is quadrati andalso independent of the number of parameters [16℄. Henethe omputation time is dominated by the time needed toompute the objetive funtion, gradient, and Hessian, allof whih inrease linearly with the number of parameters.C. Redundantly Atuated Closed Chain: the Rower
u�(a) Human on rowingmahine. (b) Correspondingmehanism.Fig. 4. A shemati piture of rowing.As our �nal example, we onsider the minimum torquerowing motion of a human onsisting of two losed loops.Figure 4 (b) shows the planar kinemati hain used tomodel the human. The mehanism has �ve kinemati de-grees of freedom and seven atuated joints. In the �gure,the irles represent rotational joints and retangles repre-sent prismati joints; �lled-in irles imply that the jointis atuated. The prismati joints and the base link are notshown expliitly in the �gure for visualization purposes.A 40 newton-meter torque is applied lokwise at thejoint to whih the oar is attahed. Table II shows themasses and rotational inertias of the various links, obtainedfrom [23℄ to losely approximate the atual values for atypial human. The top row of Figure 5 depits the initialmotion, obtained by linear interpolation of the joint val-ues between the initial and �nal poses, while the optimizedmotion is shown in the bottom row. It is interesting to

TABLE IIMasses and moments of inertia for the human model.Link Mass(kg) Moment of inertia(kgm2)Pelvis 16.61 (0.23, 0.18, 0.16)Trunk 29.27 (0.73, 0.63, 0.32)Arm 2.97 (0.025, 0.025, 0.005)Forearm 1.21 (0.005, 0.0054, 0.0012)Thigh 8.35 (0.15, 0.16, 0.025)Shank 4.16 (0.055, 0.056, 0.007)note the similarity between the optimized motion and theatual rowing motion exerted by a human.For this example the optimized motion was obtained af-ter 38 iterations using the BFGS quasi-Newton method,with a total omputation time of 54.43 seonds. Ten ontrolpoints were used for eah joint trajetory, with a B-spline oforder three for the interpolating urves. The same optimalmotion was obtained with the modi�ed Newton algorithm,but with a longer omputation time. Our experiene simu-lating a wide array of multibody systems indiates that, ingeneral, the BFGS quasi-Newton method requires between10-50% less omputation time than the modi�ed Newtonmethod. VII. ConlusionIn this paper we have presented an optimization-basedmethodology for motor learning that emulates the low-levelapabilities of human motor oordination and learning.The systems we address inlude hains ontaining multi-ple losed loops and an arbitrary number of atuators; thisinludes antagonisti, redundantly atuated systems likethe human body.Previous lassial optimization-based approahes to mo-tor learning were limited in their e�etiveness to kinemati-ally simple, low degree-of-freedom systems; for even mod-erately omplex systems, these algorithms typially led toill-onditioning, instability, and poor onvergene behav-ior, beause of their inability to deal with the omplexityof the nonlinear dynamis, and their reliane on approxi-mated gradient and Hessian information.In this paper we have shown that by appealing to teh-niques from the theory of Lie groups, both the equationsof motion, and gradient and Hessian information, an beexatly and reursively omputed for even ompliated an-tagonisti multibody systems. The resulting algorithmsare still omputation-intensive, but are O(n) with respetto the number of rigid bodies omprising the system. Ex-amples of minimum e�ort motions for various multibodysystems demonstrate that these algorithms an serve as abasis for a robust, omputationally e�etive, model-basedmotor learning apability.Our initial results suggest a number of topis for furtherstudy. First, as shown from our ase studies, the number ofontrol points and the order of the urve play an importantrole in both the omputational eÆieny and �nal shape ofthe optimized motions. From this point of view, B-spline
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Fig.5.Initialandoptimizedmotionsforrowing.

wavelets are also worth onsidering in that the trajetory isrepresented hierarhially instead of in terms of a B-splinebasis [36℄. Other objetive funtions, e.g., minimum-timemotions, also deserve further attention.AppendixI. Differentiation of the Constraint JaobianWe provide formulas for obtaining the derivatives of theonstraint Jaobian (note that the Jaobian in spae frameoordinates is used throughout). LetJ = [J1 � � � Jn℄ (79)Ji = Adf0;iSi: (80)Then �Jl�qi = (JiJl � JlJi = [Ji; Jl℄ if i < l;JlJi � JlJi = 0 if i � l: (81)��qi (�Jl�qj ) = 8>>>>>>>><>>>>>>>>:
[adJiJj ; Jl℄ + [Jj ; adJiJl℄ =adadJiJjJl + adJjadJiJlif i < j < l;[Jj ; adJiJl℄ = adJjadJiJlif j � i < l;0 elsewhere: (82)_Ji = i�1Xj=1adJjJi _qj (83)�Jl�pj = l�1Xk=1 �qk�pj adJkJl (84)�2Jl�pi�pj = l�1Xk=1f �2qk�pi�pj adJkJl+�qk�pj l�1Xm=1 �qm�pi (adJkadJmJl)+�qk�pj k�1Xm=1 �qm�pi (adadJmJkJl)g (85)�2 _Jl�pi�pj = l�1Xk=1f(ad �2Jk�pi�pj Jl + ad �Jk�pj �Jl�pi + ad �Jk�pi �Jl�pj+adJk �2Jl�pi�pj ) _qk + (ad �Jk�pj Jl + adJk �Jl�pj )� _qk�pi+(ad �Jk�pi Jl + adJk �Jl�pi )� _qk�pj+adJkJl �2 _qk�pi�pj g: (86)Referenes[1℄ R. M. Alexander, \A minimum energy ost hypothesis for humanarm trajetories," Biol. Cybern., vol. 76, pp. 97-105, 1997.[2℄ C. G. Atkeson, \Learning arm kinematis and dynamis," Ann.Rev. Neurosi., vol. 12, pp. 157-183, 1989.[3℄ J.T. Betts, \Survey of Numerial Methods for Trajetory Opti-mization," Journal of Guidane, Control and Dynamis, vol. 21,no. 2, 193-207, 1999.
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