IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 2, FEBRUARY 1993 351

An Algorithm for RLS Identification of Parameters
that Vary Quickly with Time

James E. Bobrow and Walter Murray

Abstract—An alternative to the standard recursive least-squares algo-
rithm for fixed-order systems with exponential data weighting is pre-
sented. The approach uses Givens orthogonal transformations to update
the Cholesky factor of the information matrix without ever needing to
form it. The resulting algorithm gives a higher precision solution and is
less sensitive to ill-conditioning when compared to other reported ap-
proaches. It is demonstrated by an example that ill-conditioned prob-
lems with parameters that vary quickly can be modified to stabilize
erratic parameter fluctuations.

I. INTRODUCTION

This work was motivated by the need in some robotics applica-
tions for on-line identification of parameters that vary quickly
with time. In many instances, the identification problem is
extremely ill-conditioned. Consequently, when designing algo-
rithms for such problems, it is essential to exercise care, other-
wise there may be no precision in a computed solution.

The problem of interest may be couched as that of finding the
solution of a sequence of least-squares problems. Namely

(1.1)

minimize [|D, A, 6, — D,y
0

for k=1, 2,--,where AL, = (4%, 6,,,), D, = diag (A",
A*=2,...1),and 0 < A < 1. The scalar A is known as the “forget-
ting factor,” and is used to place less weight on past data.

The use of orthogonal transformations for solving least-squares
problems is well established, as is the inadvisability of utilizing
the normal equations [4], [3]. However, in the class of problems
considered here, the use of normal equations is commonplace.
This may be due, in part, to the fact that for large k, the
orthogonal factor, which is a k X k matrix, would be too expen-
sive to recur. Recently, orthogonal transformations have been
used for solving variable-order lattice problems [6].

Typically, identification algorithms take new data available at
each time step and update the error covariance matrix P (P!
is termed the information matrix). They then solve for the
corresponding change in parameter estimates based on this new
data. The most straightforward update for P is equivalent to
using the matrix-inversion lemma to incorporate new data into P
at each iteration. The recursive equations obtained are also the
conventional Kalman filter update [7]. A more numerically sta-
ble method is obtained from a UTDU factorization of P, where
U is an upper triangular matrix and D is a diagonal matrix. A
rank-one change is made to this factorization, when new data is
available [2].

In this note, we describe an approach that does not use the P
matrix. The numerical properties of the algorithm are similar to
solving (1.1) directly by a QR factorization. We show how R may
be updated using orthogonal matrices without the need to store

Manuscript received April 12, 1991. This work was supported in part
by the National Science Foundation under Grant ECS-8715153 and by
the Office of Naval Research under Contract N00014-87-K-0142.

J. E. Bobrow is with the Department of Mechanical and Aerospace
Engineering, University of California, Irvine, CA 92717.

W. Murray is with the Department of Operations Research, Systems
Optimization Laboratory, Stanford University, Stanford, CA 94305-4022.

IEEE Log Number 9203114.

Q. The number of operations required is only slightly more than
alternative approaches.

I1. REVIEW OF BATCH LEAST-SQUARES PROBLEMS

Consider a set of equations of the form y, = ¢/6 +r,, i = 1,
2,-,k, where y; is a scalar output, ¢; € R”, r, is a residual

error, and 6 € R". We seek the vector 6* that solves
(2.1)

where AT = (¢,, ¢y,0+0, b,). We assume that k > n. If A has
full-column rank, then the unique minimizer 6* of (2.1) is
defined by the well-known normal equations

minimize [| 46 — y(3
geR"

AT46* = ATy, (2.2)
An obvious way to solve (2.2) is by computing the Cholesky
factorization of A”4. However, the condition number of 474 is
the square of the condition number of 4. Hence, the computed
solution of (2.2) may be severely degraded even if A4 is only
moderately ill-conditioned.

Any recursive identification method that updates the error
covariance matrix (474)"! = P will suffer from the above-
mentioned malady. This includes the standard recursive least-
squares algorithm [5] or the more numerically stable update
based on a UTDU factorization of P [2]. The following approach
retains the conditioning of the original problem [4].

Suppose R is known such that

o ()

where Q is an orthogonal k X k matrix; and R is an upper
triangular n X n matrix. The term square-root filter has also
been used for R in estimation literature [1].

Since Euclidean length is preserved by an orthogonal transfor-
mation, (2.1) is equivalent to

(2.3)

minimize [|Q746 — Q7y|1? 24)
fcR"
or
minimize |R6 — 7)1 + |72 (2:5)
s R"
where Q7y = ;) If y is also known, the minimizer of (2.1)

may be found by solving R6* = y, which requires n(n + 1)/2
flops. The value of the minimum residual is || 7]

For the batch least-squares problem, the matrix R is found
from a sequence of Householder transformations applied to 4
[4]. We may apply these transformation to y simultaneously,
hence, Q need not be stored explicitly. It will be seen that the
same is true for sequential least-squares parameter identifica-
tion. The required triangular factor is found recursively using a
sweep of Givens rotations, as described in the next section.

II1. SEQUENTIAL IDENTIFICATION

It follows from (1.1) that at the (k + 1) stage, we wish to solve
the following problem:
Ay
0~ (Yk+])

2

minimize
T

feR" brr1

3.1)

0018-9286,/93$03.00 © 1993 IEEE

352 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 2, FEBRUARY 1993

At first sight, this does not look promising, since A, , differs
from A, by a rank n matrix. However, it will be seen from the
following lemma that R, may be recurred quite simply.

R Y
Lemma 3.1: 1If A, = Q(Ok) and Q7y = ();) where Q is an

orthogonal matrix and R, is an upper triangular matrix, then
the minimizer of (3.1) is also the minimizer of

inimize | [T o= [2 2 (32)
minimize - .
ge " (15/(T+1 Yi+1
Proof: Form the normal equations for both systems and
_ AA
compare them. Let A = | . g , then
¢k+ 1
A = NATA, + ¢ &), = NMRIR, + ¢, L.,
and
—r[AY
A (ka = NApy + b Vi
= X(R{O)QTy + dps 1 ¥is)
= NR(Ji + b1 Vit
[]
To obtain the minimizer of (3.2), which we refer to as 6, |,
AR
one only needs to update the factor T g to form R, , and
k+1

solve the triangular system R, ,6,,, = ¥..,. However, because
it is preferable to solve for the change in 6, rather than 6,
itself, we write

iy = O + & (3.3)
and solve (3.2) for §,. :
Suppose an orthogonal matrix Q is known such that
[AR R
. =(“‘). (3.4)
it 0
From (3.2)-(3.4), it follows that §, is the minimizer of
_{ AR, 5 Ay AR
minimize {|Q 56— Q (K) - 0, 35
8 ¢1<T-»-1) { Vi1 ¢Z+1 g 3-9)
which reduces to
S Ry s{ 0
mlm;mze (0 6—Q Uy o (3.6)

where uy,, =y, — ¢F,6,. Hence, 8, may be found by
solving the triangular system

Ry 18k = Vi 3.7

(i) =eful)

To find the Q that satisfies (3.4), we use a sweep of Givens
plane rotations to annihilate the ¢/, term in (3.4). Because Q
must also premultiply the right-hand side of (3.8), we perform
the required sweep on the augmented matrix

AR, 0
¢1<T+1 Ut |

where ¥, satisfies

(3.8)

(3.9)

IV. A MATLAB PROGRAM

A listing of a MATLAB program that computes one update is
given in the Appendix. [t may be seen by examining the listing of
routine “sweep,” that the multiplications of R, by A can be
avoided by modifying the Givens transformations. This mod-
ification requires only 3sn multiplications rather than the
n(n + 1)/2 required otherwise. The number of operations for
one sweep of plane rotations is 2n* + 7n multiplications, 2n
divisions, and n square roots.

The steps needed for each recursive update are as follows.

1) Compute the prediction crror y,,, — ¢/, 60, routine
“Ispr” in the Appendix.

2) Form the (n + 1) X (n + 1) matrix in (3.9); routine
“newqr” in the Appendix.

3) Sweep the bottom n left-hand elements of the above
matrix to zero using a sequence of Givens rotations; rou-
tines “sweep” and “givens” in the Appendix.

4) Solve the upper-diagonal system (3.7) for §,; routine
“solve” in the Appendix.

The number of muitiplications for the standard Kalman up-
date (taking into account symmetry) is 1.5n% + 4.52 [2]. The
total for our algorithm 2.5n% + 7.5n multiplications, 2n divi-
sions, and n square roots. The Givens computations can be
reduced by approximately 50% with the divisions, and square
roots eliminated using “fast Givens” transformations [4]. How-
ever, we did not implement this method because: 1) the poten-
tial exists for numerical instability; and 2) a moderate amount of
cxtra logic is required.

V. Two EXAMPLES

As a simple example of the benefits of the improved precision
obtained with this algorithm, consider the system

v, = sin (0.1k)u, (5.1)
where we assume the unknown time-varying parameter is 6, =
sin (0.1k). We do not assume that an analytic description of
the paramcter variation with time is known. Therefore, we
are forced to identify a nonstationary quantity. If the input is
u, = sin (k) for k = 1,--,100 and A = 0.9, the plot shown in
Fig. 1 results. The solid plot is the desired parameter estimate
sin (0.1k), the dashed plot is the estimate from our algorithm,
and the dotted line is the estimate from a UD update. It should
be noted that both algorithms could be made to track more
closely by decreasing A.

To demonstrate what happens as the 4 matrix begins to lose
rank when an input signal is barely exciting, consider the system

Ve =uUp tup_ +sin(01k)u,_,

where we assume the unknown time-varying parameter is 6, =
[1, 1, sin (0.1k)]". If the input is

uy = sin (0.2k) + a sin (k)

then as « decreases, the rank of the A matrix will shift from 3
to 2. The top plot in Fig. 2 shows the third component of 6,
when « = 1, and the bottom plot is for « = 0.01. In both cases
A = 0.5. Larger values of A caused a considerable lag in the
parameter estimates, and did not decrease the fluctuations in
the estimates until A was very close to 1. Clearly, there is a need
to smooth these estimates. Our approach is described in the next
section.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 2, FEBRUARY 1993 353

) 20 40 60 80 100 120

Fig. 1. Estimating a sin wave (A = 0.9).

10 20 30 40 S0 60 70 80 90 100

Fig. 2. 'The third component of 8, for A = 0.5. The top plot is due to a
richer input (a = 1) than the bottom (& = 0.01).

VI. INTERNAL FILTERING OF THE ESTIMATES

As the forgetting factor A is decreased for faster parameter
tracking, and as the number of parameters is increased, the
matrix R, becomes more ill-conditioned. It may be observed
from the bottom plot of Fig. 2 that this may cause substantial
fluctuations in the parameter estimates. It is probably why many
adaptive control algorithms use large values for A (usually A >
0.95). Unfortunately, this yields a system with very poor esti-
mates when the parameters are changing rapidly.

One way to decrease parameter fluctuations, without sacrific-
ing tracking, is by adding to the cost function the desire to
minimize parameter fluctuation at each instant. For example,
one might want the parameter estimates to decay according to

E(q)6, = (qp + ap—lqp_l + ap—qu_z +oee+ an)ek =0
(6.1)

where E(q) is a stable polynomial in the forward shift operator
q(gx, = x;,1). A cost associated with this can be added to the
least-squares update by solving (6.1) for the desired change in
parameter estimate in terms of the previous estimates

(¢ Ay)0y +a, 105+ +agb_,]1=g(6)
(6.2)

where g(6,) is updated at each k. With the desired value 8,
known, the augmented cost function is

(Rk+l)34 yk+1
wi wg(6y)

2

(6.3)

0 10 20 30 40 50 60 70 80 90 100

Fig. 3. The same system and input as the bottom plot in Fig. 2. The top
plot is the third component of 6, and the bottom is the first component.

where w is a small weighting factor. Note that R,,; is
still the triangular factor corresponding to A,

- . . [A
it is not the factor corresponding to the matrix k In or-

R
der to solve (6.3), we need to reduce (";1) to upper-triangu-
W,

lar form. Since n rows have been added to the cost function, the
update would require n sweeps. In general, this is far too
expensive for real-time applications, except when n is very small.
An alternative is to add one row of the n-desired filtered values
of &/ at each iteration. The row added is being rotated with k.
We now recur the triangular factor of the augmented matrix. In
theory, we should remove the (k + 1 — n)th augmented row at
the k + 1 iteration. However, by then, the forgetting factor has
reduced its contribution by A". In this scheme, we recur the
triangular factor of the augmented matrix and not that of A4,.
The method for smoothing the estimates described above was
applied to the system described in the second example for the
ill-conditioned case a = 0.01. The filter E(g) was set to (g —
0.5)* and the weighting w = 0.1. These quantities resulted in the
estimates shown in Fig. 3. The top plot is the third component of
6,, and the bottom is the first component. Comparing the scale
of the bottom plot of Fig. 2 to the scale in Fig. 3, we see that the
parameter estimate is much closer to its desired value.

VII. INITIALIZATION

For the first n — 1 iterations, the least-squares problem is
underdetermined and, hence, does not have a unique solution.
We initialize R, = €I, where e is suitably small. The effect of
the initial choice is to make the computed solution very close to
the solution of least length. The modifications to regularize the
problem are only commenced after »n iterations.

VIII. APPENDIX

function X = Ispr(A,y,lam)
% Sequential least-squares parameter estimation for Ax = y.
% Input

%o y — Column vector of output data.
% A — m X n matrix.
% Output

% X — parameter estimate vector

354 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 2, FEBRUARY 1993

[m, n] = size(A); x = zeros(n, 1); dx = zeros(n, 1);
for k = I:m
phi = Ak, 1)’;
e = y(k) — phi'*x;
[R,yb] = newqr(R, phi, e, lam);
dx = solve(R, yb);
X =X + dx;
X(k,:) =x';
end
function [R,yb] = newqr(R, phi, e, lam)
[m, n] = size(R);
BigR = [R zeros(n, 1); phi’ e];
fori = l:n
BigR = sweep(BigR, i, lam);
end
R = BigR(1:n, 1:n);
yb = BigR(1:n,n + 1);
function A = sweep(A, i, lam)

% Input

% A — n X n matrix

% i — The (i, n) rows of the A matrix are swept, with the
% element A(n, i) being annihilated.

% lam — The forgetting factor.

% Output

% A — swept matrix.

[m, n] = size(A);
[e,s, 1] = givens(A(i,)*lam, A(n, 1));
AG,i) =1
An, i) = 0.0;
clam = c*lam;
slam = s*lam;
fork=1+ 1in
a = A(i, k)*clam + A(n, k)*s;
A, k) = — AG, k)*slam + A(n, k)*c;

A(,k) = a;

end
function [c, s, r] = givens(a, b)
% Input
% a,b — Elements of a vector for the which b component
% is to be annihilated by a plane rotation.
% Output
% ¢,s — The required transformation.
% 1 — The length of the vector.
r=sqrtta 2 + b"2);
if r < 1.0e-8,

c=1;s=0;r = 1.0e-8;
else

c=a/r

s=b/r;
end

function x = solve(R, b)
% Solves Rx = b for x assuming R is upper right triangular.
% Input

% b — Column vector of output data.
% R — right triangular matrix.
% Output
% X — solution.
[m,n] = size(R);
for k = n:— 1:1,
sum = 0.0;

forj=k+ I:n
sum = sum + Rk,)*x(j, 1);
end
x(k, 1) = (b(k) — sum)/R(k, k);
end

REFERENCES

[1] A. Andrews, “A square root formulation of the Kalman covariance
equations,” AIAA J., vol. 6, no. 6, 1968.

[2] G.J. Bierman, Factorization Methods for Discrete Sequential Estima-
tion. New York: Academic, 1977.

[3] P.E.Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra
and Optimization, vol. 1. Redwood City, CA: Addison-Wesley,
1991.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations.
more, MD: The Johns Hopkins University Press, 1990.

[51 G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and
Control. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[6] P.S.Lewis, “QR-based algorithms for multichannel adaptive least
squares Lattice filters,” IEEE Trans. Acoust., Speech, Signal Proc.,
vol. 38, no. 3, pp. 421-431, 1990.

[71 L. Ljung and T. Soderstrom, Theory and Practice of Recursive
Identification. Cambridge, MA: M.LT. Press, 1983.

Balti-

On Constrained Optimization of the Klimov Network
and Related Markov Decision Processes

Armand M. Makowski and Adam Shwartz

Abstract—We solve a constrained version of the server allocation
problem for the Klimov network and establish that the optimal con-
strained schedule is obtained by randomizing between two fixed priority
schemes. This generalizes the work of Nain and Ross in the context of
the competing queue problem and also covers the discounted cost case.

In order to establish these results, we develop a general framework for
optimization under a single constraint in the presence of index-like
policies. This methodology is in principle of wider applicability.

[. INTRODUCTION

Consider the discrete-time system of K competing queues
with a single Bernoulli server as described in [5] and [8]. For
one-step costs which are linear in the queue sizes, it is well
known [4], [5], [8] that there exists an optimal policy which is of
the strict priority type, and this, under several cost criteria
including the discounted and average cost criteria in which case
the search for optimal policies reduces to the computation of a
few parameters. Let J(7) and J,(7) be two cost functions
associated with the one-step cost functions ¢ and d, when the
system is operated under the policy w. A single constraint
optimization problem can then be defined as follows:

(£,):

Minimize J () subject to the constraint J,(7) < V

Manuscript received April 12, 1992; revised February 21, 1992. This
work was supported in part by the National Science Foundation under
Grants ECS-83-51836 and CDR-88-03012, and partially through United
States—Israel Binational Science Foundation under Grant BSF-85-
00306.

A. M. Makowski is with the Department of Electrical Engineering and
the Systems Research Center, University of Maryland, College Park,
MD 20742.

A. Shwartz is with the Department of Electrical Engineering, Tech-
nion—TIsrael Institute of Technology, Haifa 32000, Israel.

IEEE Log Number 9203115.

0018-9286,,93$03.00 © 1993 IEEE

